© 2020 SAP SE or an SAP affiliate company. All rights reserved.

REFERENCE MANUAL | PUBLIC
SAP Adaptive Server Enterprise 16.0 SPO3
Document Version: 1.0 — 2020-03-04

Reference Manual: Building Blocks

THE BEST RUN w

Content

1

2
21

2.2
2.3

24

2.5

26
2.7
2.8

31
3.2
3.3
34
35

2

Reference Manual Series. oot i i ittt s st a i m e 10
System and User-Defined Datatypes. i i i it eeenanens 13
Datatype Categories. 13
Exact Numeric Datatypes. 13
Approximate Numeric Datatypes. 16
Money Datatypes. 18
timestamp Datatype. 19
Dateand Time Datatypes. 19
Character Datatypes. 26
Binary Datatypes. 30
bit Datatype. 32
sysname and longsysname Datatypes. 33
text, image, and unitext Datatypes. 33
Range and Storage Size. 43
Datatypes of Columns, Variables, or Parameters. 45
Declaring Datatypes foraColumninaTable. 45
Declaring Datatypes for Local Variable ina Batchor Procedure. 46
Declaring Datatypes for a Parameter ina Stored Procedure. 47
Determine the Datatype of Numeric Literals. 47
Determine the Datatype of Character Literals. 47
Datatypes of Mixed-Mode EXpressions. 48
Determine the Datatype Hierarchy. 48
Determine Precisionand Scale. 49
Datatype Conversions. 50
Automatic Conversion of Fixed-Length NULL Columns. 50
Handling Overflow and Truncation Errors. 51
Datatypes and Encrypted Columns. 55
User-Defined Datatypes. 56
Standards and Compliance. 57
Transact-SQL Functions. it i i it i i e s e asnananaananannnns 59
ADS. 59
ACOS. « o 60
allocinfo. . . o 62
ASCHI. o v 63
asehostname. 65

Reference Manual: Building Blocks
PUBLIC Content

3.6 ASIN. 66

37 AtAN. 67
38 AN, 68
3.9 AV o 70
310 audit_event_name. 72
311 authmech. . oo 76
312 biginttohex. 78
313 bINtOStr. . 79
314 caChe_USage. 81
30D CaASE. L e 83
316 cast. L 86

Usage forcast. 88
317 ceiling. . . o 89
318 Char. . 91

Usage for char. 92
319 char_length. 93
320 charindex.o 95
321 C0AlESCE. . o e 97
322 col_length. . .. 99
3.23 COlNAME. . . o 101
324 COMPArE. . . . oot e 103

Usage for compare. 107
325 CONVert. . 110

Usage for convert. 114
326 COS. it 117
3 27 Lo 118
328 COUNE. L 119
329 count_big. 121
3.30 create_locator. 123
3.31 current_bigdatetime. 124
3.32 current_bigtime. 126
3.33 current_date. 127
3.34 current_time. . .. 128
335 CUrUNIESErVEAPES . . . o o o o e 130
336 data_pages. 132
3.37 datachange. 135

Usage fordatachange. 136
3.38 datalength. 137
339 dateadd. 138
340 datediff. . . 142
341 datename. 145

Reference Manual: Building Blocks
Content PUBLIC 3

342
343
3.44
345
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
3.60
3.61
3.62
363
3.64
3.65
3.66
3.67
368
3.69
3.70
371

372
373
374
375
376
377
378
3.79
3.80
3.1

3.82

4

datepart. . .. 148
Aay. . 152
db_attr . o 153
dbid. 156
db_instanceid. 158
db_name. . . 160
db_recovery_status. 162
dbencryption_status. 164
defrag_status. 165
AEEIEES. . 168
derived_stat. 170
difference. . . o 175
dol_downgrade_check. 177
XD+ e 179
0K, o 180
generate_sqlscripl. 182
get_appeontext. 183
get_internal_date. 185
getdate. . . . 186
getutcdate. 188
hadr_mode. 189
hadr_state., 190
Nas_role. .« o 192
Nash. 194
hashbytes. 196
hextobigint. 199
hextoint. . o . 200
NOStid. . . 201
NOoSt_NamMe. . . . 203
identity_burn_max. 204
IMIS_rOWINTO. .« L L 205
INEX_COL. . . o 207
INndex_colorder. 209
INAEX_NAME. . . . 211
INStance_id. 213
INStance_Name. 214
INHEONEX. . o 215
ISAate. . . 216
IS_QUIESCEA. 217
IS_SEC_SEIVICE_ON. . o o i i e e e e e e e 219
IS_SINGIEUSErMOdE. 221

Reference Manual: Building Blocks
PUBLIC Content

3.83
3.84
3.85
3.86
3.87
3.88
3.89
3.90
3.91
3.92
3.93
3.94
3.95
3.96
3.97
3.98
3.99
3.100
3.101
3.102
3.103
3.104
3.105
3.106
3.107
3.108
3.109
3.110
3111
3112
3.113
3114
3.115
3.116
3117
3.118
3.119
3.120
3121
3.122
3.123

ISNUMETIC. © o ot o e e e e 223
(O i, 224
e NamMe. . o 225
ot admin . . 226
Y 230
leN. 231
license_enabled. 233
list_appcontext. 234
locator_literal. 236
locator_valid. 237
locksCheme. . . 239
o = 241
10810, . o 242
l0giNfO . . 243
oWl . o 248
Pad. . 249
Iprofile_id. o 251
Iprofile_name. 253
rim. 255
= 256
migrate_instance_id. 258
L 259
MONTN. L 260
MUE_EXClroleS. o 262
NMEWId. .« o 263
next_identity. 266
U, 267
object_attr. 269
object id. . . 273
object_name. 275
object_owner_id. 277
PAgEINTO. . o 279
PAGESIZE. .« . o 282
partition_id. 284
partition_name. 286
partition_object_id. 288
password_random. 290
patindex. 293
L 295
POWEE . .« ot e 297

Reference Manual: Building Blocks

Content

PUBLIC 5

3.124
3.125
3.126
3127
3.128
3.129
3.130
3.131
3.132
3133
3.134
3135
3.136
3.137
3.138
3.139
3.140
3.141
3.142
3.143
3.144
3.145
3.146
3.147
3.148
3.149
3.150
3.151
3.152
3.153
3.154
3.155
3.156
3.157
3.158
3.159

3.160
3.161
3.162
3.163

6

PrOC_rOle. .« o 298
PSSINTO. . o 300
FACIANS. .« o 302
FANA. . 304
FANA2. .« 305
replicate. . . . 307
reserve_identity. 308
FESEIVEA_PAEES. « o o o ot e e 311
FetUrN_lOD. .« o 315
FEVEISE. & o i et e et e e e 317
7= 318
rM_appContext. 321
FOle_CONtaIN. 323
FOlE id. . . 324
FOle_NAME. . . . 326
FOUNG. .« o 327
FOW_COUNT . o o 329
P 332
sde_intempdbeonfig. . .. 333
SESSION_CONteXt. . . o . 334
Set_appContext. 335
setdata. . .. 338
show_cached_plan_in_xml. 339
show_cached_text. 344
show_cached_text_long. 346
show_condensed_text. 348
show_dynamic_params_in_xml. 350
ShOW _plan. . . . 352
show_prepared_statements. 358
SNOWL IO, . o 360
SNOWL_SEC_SEIVICES. . . o o i 361
shrinkdb_status. 362
SIEN. o 364
SIBN _PAEES. o ot 366
SIN o 368
SOMtKBY. .« o 369

Usage forsortkey. 371
SOUNAEX. « « v ottt e e e e e 375
SPACE. . . o 376
SPACEUSAZE. .+« o v ot ot 378
spid_instance_id. 381

Reference Manual: Building Blocks
PUBLIC Content

3.164
3.165
3.166
3.167
3.168
3.169
3.170
3.171

3172
3.173
3.174
3.175
3.176
3.177
3.178
3.179
3.180
3.181

3.182
3.183
3.184
3.185
3.186
3.187
3.188
3.189

3.190
3.191
3.192
3.193
3.194
3.195
3.196
3.197
3.198
3.199
3.200
3.201
3.202
3.203

SQUANME. & o ot e e e e e 382
SO, o 384
StAdeV. . . 385
USEA _PAZES. . o ot ot e 386
StAeV. .« 388
StV . 389
StAdeV_Pop. . . o 389
stddev_samp. 391
SEr 393
Strreplace. 395
StODIN. L 398
STUME. 400
SUDSEIING. . o 402
SUML. o ot e e 404
SUSEI Q. .« o o e 406
SUSEI_NAME. © . . v e e e e e e e e e e 407
Sy _qUIt. . 409
SYD _SEeNAMISg. . . . 410
sys_tempdbid. . .. 411
£ 412
tempdbid. . . 414
X Pt . . 414
textvalid. . . 417
to_UNiChar. . . . 418
tran_dumpable_status. 419
tsequal. . . . 421

Usage for tsequal.o 422
UNIGNSUIT. L 423
U OW S U, o 425
6 o] o =Y 426
USCAlar. .« o 427
T 428
USEEr_id. .« . 430
USEI_NAME. . o o o e e e e e e e e e e e 431
valid_name. . . . 433
Valid USer. . 434
VA 436
VA POP. o e e 437
VA SAMP. .« o e e e e e 439
VAMANCE. .« . o 440
VD, o o 441

Reference Manual: Building Blocks

Content

PUBLIC 7

3.204
3.205
3.206
3.207
3.208
3.209
3.210
3.211
3.212
3.213
3.214
3.215

6.2

8

workload_metric. 441
Xa_bqual. . .. 443
Xa_Glrid. 446
xact_connmigrate_check. 448
Xact_owner_instance. 449
XIleXtract. « . o 451
XINIDAISE. o o 451
xmirepresentation. 452
XMable. o 452
XISt 452
xmivalidate. . .. 453
VAN .« o i 453
User-Defined Functions (UDFS). ittt ittt i it eenannanannnns 455
Global Variables. i i i i e a e e e 457
Using Global Variables in a Clustered Environment. 467
Expressions, Identifiers, and Wildcard Characters. i 468
EXPreSSIONS. « . o 468
Size Of EXPressions. 468
Arithmetic and Character Expressions. 469
Relational and Logical EXpressions. 469
Operator Precedence. 469
Arithmetic Operators. 470
Bitwise Operators. 471
String Concatenation Operator. 472
Comparison Operators. 473
Nonstandard Operators. 473
Usingany, all, andin. 474
Negatingand Testing. 474
RaNges. . . o 474
Using NUllsS in EXPressions.ot 474
Connecting EXPressions. ot 476
Using Parentheses in EXpressions. 477
Comparing Character EXpressions. 477
Usingthe Empty String. 477
Including Quotation Marks in Character Expressions. 478
Using the Continuation Character. 478
ldentifiers. . . o 478
Shortldentifiers. 479
Tables Beginning With # (Temporary Tables). 480

Reference Manual: Building Blocks
PUBLIC Content

6.3
64

71
7.2
7.3

81
8.2

Case Sensitivity and Identifiers. 480

Uniqueness of Object Names. e 481
Using Delimited Identifiers. 481
Identifying Tables or Columns by Their Qualified Object Name. 485
Determining Whether an IdentifierisValid. 487
Renaming Database Objects. 487
Using Multibyte Character Sets. 487
like Pattern Matching. 488
Pattern Matching with Wildcard Characters. 489
Case and Accent Insensitivity. 490
Using Wildcard Characters. 490
Using Multibyte Wildcard Characters. 492
Using Wildcard Characters as Literal Characters. 492
Using Wildcard Characters With datetimeData. 494
Reserved Words.ottt it it e s e 495
Transact-SQL Reserved Words. 495
ANSISQL Reserved Words. 496
Potential ANSI SQL Reserved Words. 498
SQLSTATE Codes and MessSages. o .o v vt i it i e i m et et mansansmnsnnnsannnnn 499
SQLSTATE Warnings. oo e 499
EXCepioNS. . . o 500
Cardinality Violations. 500
Data Exceptions. 501
Integrity Constraint Violations. 502
Invalid Cursor States. 502
Syntax Errors and Access Rule Violations. 503
Transaction Rollbacks. 504
with check option Violation. 505

Reference Manual: Building Blocks

Content

PUBLIC 9

1 Reference Manual Series

Along with this the SAP ASE Reference Manual: Building blocks, the Reference Manual series includes three
additional volumes.

Building Blocks pescribes the “parts” of Transact-SQL: datatypes, built-in functions, global variables,
expressions and identifiers, reserved words, and SQLSTATE errors.

Commands Provides reference information about the Transact-SQL commands, which you use to create
statements.
Procedures Provides reference information about system procedures, catalog stored procedures,

extended stored procedures, and dbcc stored procedures. All procedures are created using
Transact-SQL statements.

Tables Provides reference information about the system tables, which store information about your
server, databases, users, and other details of your server. It also provides information about
the tables in the dbccdb and dbccalt databases.

Conventions

The following sections describe conventions used in the Reference Manual guides.

SQL is a free-form language. There are no rules about the number of words you can put on a line or where you
must break a line. However, for readability, all examples and most syntax statements in this manual are
formatted so that each clause of a statement begins on a new line. Clauses that have more than one part
extend to additional lines, which are indented. Complex commands are formatted using modified Backus Naur
Form (BNF) notation.

This table shows the conventions for syntax statements that appear in this manual:

Element Example

Command names,procedure names, utility names, data- select

base names, datatypes, and other keywords display in

) sp configure
sans serif font. -

master database

Book names, file names, variables, and path names are in ~ System Administration Guide
italics. D
sqgl.ini file

<column_name>

$SSYBASE/ASE directory

Reference Manual: Building Blocks
10 PUBLIC Reference Manual Series

Element

Example

Variables—or words that stand for values that you fill in—
when they are part of a query or statement, are in angled
brackets.

select <column name> from <table name>

where <search conditions>

Type parentheses as part of the command.

compute <row aggregate> (<column name>)

Double colon, equals sign indicates that the syntax is writ-
ten in BNF notation. Do not type this symbol. Indicates “is
defined as”.

Curly braces mean that you must choose at least one of
the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean that to choose one or more of the en-
closed options is optional. Do not type the brackets.

[cash | check | credit]

The comma means you may choose as many of the op-
tions shown as you want. Separate your choices with
commas as part of the command.

cash, check, credit

The pipe or vertical bar (|) means you may select only
one of the options shown.

cash | check | credit

An ellipsis (...) means that you can repeat the last unit as
many times as you like.

buy thing = price [cash | check | credit]
[, thing = price [cash | check |

credit] 1...

You must buy at least one thing and give its price. You may
choose a method of payment: one of the items enclosed in
square brackets. You may also choose to buy additional things:
as many of them as you like. For each thing you buy, give its
name, its price, and (optionally) a method of payment.

e Syntax statements (displaying the syntax and all options for a command) appear as follows:

sp_dropdevice [<device name>]
For a command with more options:

select <column name>
from <table name>
where <search conditions>

In syntax statements, keywords (commands) are in normal font and identifiers are in lowercase. Italic font

shows user-supplied words.

e Examples showing the use of Transact-SQL commands are printed like this:

select * from publishers

Reference Manual: Building Blocks
Reference Manual Series

PUBLIC

1

e Examples of output from the computer appear as follows:

pub id pub name city state
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

In this manual, most of the examples are in lowercase. However, you can disregard case when typing Transact-
SQL keywords. For example, SELECT, Select, and select are the same.

SAP ASE sensitivity to the case of database objects, such as table names, depends on the sort order installed
on the SAP ASE server. You can change case sensitivity for single-byte character sets by reconfiguring the SAP
ASE sort order. For more information, see the System Administration Guide.

Reference Manual: Building Blocks
12 PUBLIC Reference Manual Series

2 System and User-Defined Datatypes

SAP® Adaptive Server® Enterprise provides several system datatypes and the user-defined datatypes
timestamp, sysname, and longsysname, which specify the type, size, and storage format of columns, stored
procedure parameters, and local variables.

2.1 Datatype Categories

SAP ASE provides several system datatypes and the user-defined datatypes timestamp, sysname, and

longsysname.

2.1.1 Exact Numeric Datatypes

Use the exact numeric datatypes to represent a value exactly. SAP ASE provides exact numeric types for both
integers (whole numbers) and numbers with a decimal portion.

Transact-SQL provides the smallint, int, bigint, numeric, and decimal ANSI SQL exact numeric
datatypes. The unsigned bigint,unsigned int,unsigned smallint,and tinyint types are Transact-
SQL extensions.

2.1.1.1 Integer Types

SAP ASE provides these exact numeric datatypes to store integers: bigint, int (or integer), smallint,
tinyint and each of their unsigned counterparts. Choose the integer type based on the expected size of the
numbers to be stored. Internal storage size varies by type:

Datatype Stores Bytes of Storage

bigint Whole numbers between -263 and 263 - 1 (from 8
-9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807, inclusive.

int [eger] Whole numbers between-23! and 231-1(-2,147483,648 4
and 2,147483,647), inclusive.

smallint Whole numbers between -215 and 215-1 (-32,768 and 2
32,767), inclusive.

tinyint Whole numbers between O and 255, inclusive. (Negative 1
numbers are not permitted.)

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 13

Datatype Stores Bytes of Storage

unsigned bigint Whole numbers between O and 8
18,446,744,073,709,551,615

unsigned int Whole numbers between O and 4,294,967,295 4

unsigned smallint Whole numbers between 0 and 65,535 2

Integer Data

Enter integer data as a string of digits without commas. Integer data can include a decimal point as long as all
digits to the right of the decimal point are zeros. The smallint, integer, and bigint datatypes can be
preceded by an optional plus or minus sign. The tinyint datatype can be preceded by an optional plus sign.

The following shows some valid entries for a column with a datatype of integer and indicates how isql

displays these values:
Value Entered

2

+2

-2

2.

2.000

Value Displayed
2

Some invalid entries for an integer column are:

Value Entered
2,000

2-

345

14 PUBLIC

Type of Error
Commas not allowed.

Minus sign should precede digits.

Digits to the right of the decimal point are nonzero digits.

Reference Manual: Building Blocks
System and User-Defined Datatypes

2.1.1.2 Decimal Datatypes

SAP ASE provides two other exact numeric datatypes, numeric and dec[imal], for numbers that include
decimal points. The numeric and decimal datatypes are identical in all respects but one: only numeric
datatypes with a scale of O and integer datatypes can be used for the IDENTITY column.

Precision and Scale

The numeric and decimal datatypes accept two optional parameters, precision and scale, enclosed in
parentheses and separated by a comma:

<datatype> [(<precision> [, <scale>])]

SAP ASE treats each combination of precision and scale as a distinct datatype. For example, numeric (10, 0)
and numeric (5, 0) are two separate datatypes. The precision and scale determine the range of values
that can be stored in a decimal or numeric column:

® The precision specifies the maximum number of decimal digits that can be stored in the column. It
includes all digits, both to the right and to the left of the decimal point. You can specify precisions ranging
from 1 digit to 38 digits or use the default precision of 18 digits.

® The scale specifies the maximum number of digits that can be stored to the right of the decimal point. The
scale must be less than or equal to the precision. You can specify a scale ranging from O digits to 38 digits,
or use the default scale of O digits.

Storage Size

The storage size for a numeric or decimal column depends on its precision. The minimum storage
requirement is 2 bytes for a 1- or 2-digit column. Storage size increases by approximately 1 byte for each
additional 2 digits of precision, up to a maximum of 17 bytes.

Use this formula to calculate the exact storage size for a numeric or decimal column:
ceiling (precision / logl0(256)) + 1

For example, the storage size for a numeric(18,4) column is 9 bytes.

Decimal Data

Enter decimal and numeric data as a string of digits preceded by an optional plus or minus sign and including
an optional decimal point. If the value exceeds either the precision or scale specified for the column, the SAP
ASE server returns an error message. Exact numeric types with a scale of O are displayed without a decimal
point.

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 15

Some valid entries for a column with a datatype of numeric (5, 3), and how these values are displayed by

isql:

Value Entered Value Displayed
12.345 12.345

+12.345 12.345

-12.345 -12.345
12.345000 12.345

12.1 12.100

12 12.000

Some invalid entries for a column with a datatype of numeric (5, 3) include:

Value Entered Type of Error

1,200 Commas not allowed

12- Minus sign should precede digits.

12.345678 Too many nonzero digits to the right of the decimal point.

2.1.2 Approximate Numeric Datatypes

Use the approximate numeric types, float, double precision, and real, for numeric data that can
tolerate rounding. The approximate numeric types are especially suited to data that covers a wide range of
values. They support all aggregate functions and all arithmetic operations.

The float, double precision, and real datatypes are ANSI SQL entry-level compliant.

2.1.2.1 Understanding Approximate Numeric Datatypes

Approximate numeric datatypes, used to store floating-point numbers, are inherently slightly inaccurate in
their representation of real numbers—hence the name “approximate numeric.” To use these datatypes, you
must understand their limitations.

When a floating-point number is printed or displayed, the printed representation is not quite the same as the
stored number, and the stored number is not quite the same as the number that the user entered. Most of the
time, the stored representation is close enough, and software makes the printed output look just like the
original input, but you must understand the inaccuracy if you plan to use floating-point numbers for
calculations, particularly if you are doing repeated calculations using approximate numeric datatypes—the
results can be surprisingly and unexpectedly inaccurate.

The inaccuracy occurs because floating-point numbers are stored in the computer as binary fractions (that is,
as a representative number divided by a power of 2), but the numbers we use are decimal (powers of 10). This
means that only a very small set of numbers can be stored accurately: 0.75 (3/4) can be stored accurately
because it is a binary fraction (4 is a power of 2); 0.2 (2/10) cannot (10 is not a power of 2).

Reference Manual: Building Blocks
16 PUBLIC System and User-Defined Datatypes

Some numbers contain too many digits to store accurately. double precision is stored as 8 binary bytes
and can represent about 17 digits with reasonable accuracy. real is stored as 4 binary bytes and can represent
only about 6 digits with reasonable accuracy.

If you begin with numbers that are almost correct, and perform computations with them using other numbers
that are almost correct, you can easily end up with a result that is not even close to being correct. If these
considerations are important to your application, use an exact numeric datatype.

2122 Range, Precision, and Storage Size

The real and double precision types are built ontypes supplied by the operating system. The float type
accepts an optional binary precision in parentheses. f1oat columns with a precision of 1-15 are stored as
real; those with higher precision are stored as double precision.

The range and storage precision for all three types is machine-dependent.

The range and storage size for each approximate numeric type are:

Datatype Bytes of Storage

float[(default precision)] 4fordefault precision<16

8for default precision>=16

double precision 8

real 4

isql displays only 6 significant digits after the decimal point and rounds the remainder.

21.2.3 Entering Approximate Numeric Data

Enter approximate numeric data as a mantissa followed by an optional exponent.

® The mantissais a signed or unsigned number, with or without a decimal point. The column’s binary
precision determines the maximum number of binary digits allowed in the mantissa.

® The exponent, which begins with the character “e” or “E,” must be a whole number.

The value represented by the entry is:

mantissa * 10<EXPONENT>

For example, 2.4E3 represents the value 2.4 times 103, or 2400.

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 17

2.1.2.4 NaN and Inf Values

“NaN” and “Inf" are special values that the IEEE754/854 floating point number standards use to represent
values that are “not a number” and “infinity,” respectively.

In accordance with the ANSI SQL92 standard, the SAP ASE server does not allow the insertion of these values
in the database and do not allow them to be generated. In SAP ASE versions earlier than 12.5, Open Client
clients such as native-mode bep, JDBC, and ODBC could occasionally force these values into tables.

If you encounter a NaN or an Inf value in the database, contact Sybase Customer Support with details of how to
reproduce the problem.

2.1.3 Money Datatypes

Use the money and smallmoney datatypes to store monetary data.

You can use these types for U.S. dollars and other decimal currencies, but SAP ASE provides no means to
convert from one currency to another. You can use all arithmetic operations except modulo, and all aggregate
functions, with money and smallmoney data.

The money and smallmoney datatypes are Transact-SQL extensions.

2.1.3.1 Accuracy

Bothmoney and smallmoney are accurate to one ten-thousandth of a monetary unit, but they round values up
to two decimal places for display purposes. The default print format places a comma after every three digits.

2.1.3.2 Range and Storage Size

The range and storage requirements for money datatypes are:

Datatype Range Bytes of Storage

money Monetary values between +922,337,203,685,477.5807 and 8
-922,337,203,685,477.5808

smallmoney Monetary values between +214,748.3647 and -214,748.3648 4

Reference Manual: Building Blocks
18 PUBLIC System and User-Defined Datatypes

21.3.3 Entering Monetary Values

Monetary values entered with E notation are interpreted as f1oat. This may cause an entry to be rejected or to
lose some of its precision when it is stored as amoney or smallmoney value.

money and smallmoney values can be entered with or without a preceding currency symbol, such as the dollar
sign ($), yen sign (¥), or pound sterling sign (£). To enter a negative value, place the minus sign after the
currency symbol. Do not include commas in your entry.

2.1.4 timestamp Datatype

Use the user-defined t imestamp datatype in tables that are to be browsed in Client-Library” applications. SAP
ASE updates the timestamp column each time its row is modified. A table can have only one column of
timestamp datatype.

2.1.4.1 Creating a timestamp Column

If you create a column named timestamp without specifying a datatype, SAP ASE defines the column as a
timestamp datatype.

create table testing
(cl int, timestamp, c2 int)

You can also explicitly assign the t imestamp datatype to a column named timestamp:

create table testing
(cl int, timestamp timestamp, c2 int)

You can also explicitly assign the t imestamp datatype to a column with another name:

create table testing
(cl int, t stamp timestamp,c2 int)

You can create a column named timestamp and assign it another datatype (although this may be confusing to
other users and does not allow the use of the browse functions in Open Client™ or with the tsequal function):

create table testing
(cl int, timestamp datetime)

2.1.5 Date and Time Datatypes

Use datetime, smalldatetime, bigdatetime, bigtime, date, and time to store absolute date and time
information. Use timestamp to store binary-type information.

SAP ASE has various datatypes used to store date and time values.

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 19

date

time
smalldatetime
datetime
bigdatetime
bigtime

The default display format for dates is “Apr 151987 10:23PM” bigdatetime/bigtime types have a default
display format of “Apr 151987 10:23:00.000000PM" You can use the convert function for other styles of date
display. You can also perform some arithmetic calculations on date and time values with the built-in date
functions, though the SAP ASE server may round or truncate millisecond values.

datetime columns hold dates between January 1, 1753 and December 31, 9999. datetime values are
accurate to 1/300 second on platforms that support this level of granularity. The last digit of the fractional
second is always O, 3, or 6. Other digits are rounded to one of these three digits, so O and 1 round to O; 2, 3,
and 4 round to 3; 5, 6, 7, and 8 round to 6; and 9 rounds to 10.. Storage size is 8 bytes: 4 bytes for the
number of days since the base date of January 1, 1900 and 4 bytes for the time of day.

smalldatetime columns hold dates from January 1, 1900 to June 6, 2079, with accuracy to the minute.
Its storage size is 4 bytes: 2 bytes for the number of days after January 1, 1900, and 2 bytes for the number
of minutes after midnight.

bigdatetime columns hold dates from January 1, 0001 to December 31, 9999 and 12:00:00.000000 AM
t0 11:59:59.999999 PM. Its storage size is 8 bytes. The internal representation of bigdatetime is a 64 bit
integer containing the number of microseconds since 01/01/0000.

bigtime columns hold times from 12:00:00.000000 AM to 11:59:59.999999 PM. Its storage size is 8
bytes. The internal representation of bigtime is a 64 bit integer containing the number of microseconds
since midnight.

date columns hold dates from January 1, 0001 to December 31, 9999. Storage size is 4 bytes.

time is between 00:00:00:000 and 23:59:59:990. time values are accurate to 1/300 second. The last
digit of the fractional second is always O, 3, or 6. Other digits are rounded to one of these three digits, so O
and lroundto O; 2, 3, and 4 round to 3; 5, 6, 7, and 8 round to 6; and 9 rounds to 10.You can use either
military time or 12AM for noon and 12PM for midnight. A time value must contain either a colon or the AM
or PM signifier. AM or PM may be in either uppercase or lowercase.

When entering date and time information, always enclose the time or date in single or double quotes.

2.1.5.1 Range and Storage Requirements

There are range and storage requirements for the datetime, smalldatetime, bigdatetime, bigtime,
date, and time datatypes:

Datatype Range Bytes of Storage
datetime January 1, 1753 through December 31, 9999 8
smalldatetime January 1, 1900 through June 6, 2079 4

20

Reference Manual: Building Blocks
PUBLIC System and User-Defined Datatypes

Datatype Range Bytes of Storage

bigdatetime January 1, 0001 to December 31, 9999 8
bigtime 12:00:00.000000AM to 11:59:59.999999PM 8
date January 1, 0001 to December 31, 9999 4
time 12:00:00 AM to 11:59:59:990 PM 4

2.15.2 Entering Date and Time Data

The datetime, smalldatetime, bigdatetime andbigtime datatypes consist of a date portion either
followed by or preceded by a time portion (you can omit either the date or the time, or both). The date
datatype has only a date and the t ime datatype has only the time. You must enclose values in single or double

quotes.

2.1.5.21 Entering the Date

Dates consist of a month, day, and year and can be entered in a variety of formats for date, datetime,

bigdatetime, bigtime and smalldatetime.

You can enter the entire date as an unseparated string of 4, 6, or 8 digits, or use slash (/), hyphen (-), or
period (.) separators between the date parts.

o When entering dates as unseparated strings, use the appropriate format for that string length. Use
leading zeros for single-digit years, months, and days. Dates entered in the wrong format may be
misinterpreted or result in errors.

o When entering dates with separators, use the set dateformat option to determine the expected
order of date parts. If the first date part in a separated string is four digits, SAP ASE interprets the
string as <yyyy>-<mm>-<dd> format.

Some date formats accept 2-digit years (<yy>):

o Numbers less than 50 are interpreted as 20<yy>. For example, 01 is 2001, 32 is 2032, and 49 is 2049.

© Numbers equal to or greater than 50 are interpreted as 19<yy>. For example, 50 is 1950, 74 is 1974,
and 99 is 1999.

You can specify the month as either a number or a name. Month names and their abbreviations are
language-specific and can be entered in uppercase, lowercase, or mixed case.

If you omit the date portion of a datetime or smalldatetime value, SAP ASE uses the default date of
January 1, 1900. If you omit the date portion of a bigdatetime a default value of January 1, 0001 is added.

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 21

This table describes the acceptable formats for entering the date portion of a datetime or smalldatetime

value:

Table 1: Date Formats for Date and Time Datatypes

Date Format Interpretation Sample Entries Meaning
4-digit string with no separators Interpreted as <yyyy>. Date defaultsto ~ “1947" Jan 11947

Jan 1 of the specified year.
6-digit string with no separators Interpreted as <yymmdd>. “450128" Jan 28 2045

For <yy> <50, year is 20<yy>. “520128" Jan 281952

For <yy>>=50, year is 19<yy>.
8-digit string with no separators Interpreted as <yyyymmdd>. “20150415" Apr 152015
String consisting of 2-digit month, The dateformat and language “12/15/94" All of these entries
day, and year separated by set options determine the expected or- ., 5 g » are interpreted as
slashes, hyphens, or periods, ora der of date parts. For us_english, the de- o Dec 151994 when the
combination of the above fault order is <mdy>. “12-15-94" dateformat option

u " is settomdy.

For <yy> <50, year is interpreted as 12.15/94

20<yy>. For <yy>>=50, year is inter-

preted as 19<yy>.
String consisting of 2-digit month, The dateformat and language “04/15.1994" Interpreted as Apr 15
2-digit day, and 4-digit year sepa- set options determine the expected or- 1994 when the
rated by slashes, hyphens, or pe- der of date parts. For us_english, the de- dateformat option
riods, or a combination of the fault order is <mdy>. is settomdy.
above
Month is entered in character If 4-digit year is entered, date parts can “April 15,1994" All of these entries
form (either full month name or be entered in any order. . . are interpreted as
) o 1994 15 apr
its standard abbreviation), fol- Apr 151994,
lowed by an optional comma “1994 April 15"

“15 APR 1994

If day is omitted, all 4 digits of year must ~ “apr 1994" Apr11994

be specified. Day defaults to the first day

of the month.

If year is only 2 digits (<yy>), it is ex- “mar 16 17" Mar 16 2017

pected to appear after the day. “apr 15 94" Apr 151994

For <yy> <50, year is interpreted as

20<yy>.

For <yy>>=50, year is interpreted as

19<yy>.
The empty string *" Date defaults to Jan 11900. Jan 11900

Reference Manual: Building Blocks
22 PUBLIC System and User-Defined Datatypes

215.2.2 Entering the Time

You must specify the time component of adatetime, smalldatetime, or time value.
<hours>[:<minutes>[:<seconds>[:<milliseconds>]] [AM | PM]

The time component of a bigdatetime or bigtime value must be specified as follows:

<hours>[:<minutes>[:<seconds>[<.microseconds>]] [AM | PM]

e Use 12AM for midnight and 12PM for noon.

e Atime value must contain either a colon or an AM or PM signifier. The AM or PM can be entered in
uppercase, lowercase, or mixed case.

® The seconds specification can include either a decimal portion preceded by a decimal point, or a number

of milliseconds preceded by a colon. For example, “15:30:20:1" means twenty seconds and one millisecond
past 3:30 PM; “15:30:20.1" means twenty and one-tenth of a second past 3:30 PM. Microseconds must be

expressed with a decimal point.

e |f you omit the time portion of a datetime or smalldatetime value, SAP ASE uses the default time of
12:00:00:000AM.

2.1.5.2.3 Displaying Formats for datetime, smalldatetime,
and date Values

The display format for datetime and smalldatetime valuesis “Mon dd yyyy hh:mmAM" (or “PM"); for
example, “Apr 151988 10:23PM".

To display seconds and milliseconds, and to obtain additional date styles and date-part orders, use the

convert function to convert the data to a character string. SAP ASE may round or truncate millisecond values.

Some examples of datetime entries and their display values are:

datetime Entries Value Displayed
“1947" Jan 11947 12:00AM
“450128 12:30:1PM” Jan 28 2045 12:30PM
“12:30.1PM 450128" Jan 28 2045 12:30PM
“14:30.22" Jan 11900 2:30PM
“4am” Jan 11900 4:.00AM

Some examples of date entries and their display values are:

date Entries Value Displayed
“1947" Jan 11947
“450128" Jan 28 2045
“520317" Mar 17 1952

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC

23

215.2.4 Display Formats for bigdatetime and bigtime

For bigdatetime and bigtime the value displays reflects a microsecond value. bigdatetime and bigtime
have default display formats that accommodate their increased precision.

® hh:mm:ss.zzzzzzAM or PM

® hh:mm:ss.zzzzzz

e mon ddyyyy hh:mm:ss.zzzzzzAM(PM)
e monddyyyy hhimm:ss.zzzzzz

e yyyy-mm-dd hh:imm:ss.zzzzzz

The format for time must be specified as:
° hours|[:minutes|[:seconds|[.microseconds]] [<AM> | <PM>]
° hours[:minutes[:seconds [number of milliseconds]] [<AM> | <PM>]

Use 12 AM for midnight and 12 PM for noon. A bigtime value must contain either a colon or an AM or PM
signifier. AM or PM can be entered in uppercase, lowercase, or mixed case.

The seconds specification can include either a decimal portion preceded by a point or a number of milliseconds
preceded by a colon. For example, “12:30:20:1" means twenty seconds and one millisecond past 12:30;
“12:30:20.1" means twenty and one-tenth of a second past.

To store abigdatetime or bigtime time value that includes microseconds, specify a string literal using a
point. “00:00:00.1" means one tenth of a second past midnight and “00:00:00.000001" means one millionth
of a second past midnight. Any value after the colon specifying fractional seconds continues to refer to a
number of milliseconds. Such as “00:00:00:5" means 5 milliseconds.

2.1.5.2.5 Displaying Formats for time Value

The display format for t ime values is “hh:mm:ss:mmmAM” (or “PM"); for example, “10:23:40:022PM.

time Entry Value Displayed
"12:12:00" 12:12PM
“01:23PM” or “01:23:1PM” 1:23PM
“02:24:00:001" 2:24AM

Reference Manual: Building Blocks
24 PUBLIC System and User-Defined Datatypes

215.2.6 Finding Values That Match a Pattern

Use the 1ike keyword to look for dates that match a particular pattern. If you use the equality operator (=) to
search date or time values for a particular month, day, and year, the SAP ASE server returns only those values
for which the time is precisely 12:00:00:000AM.

For example, if you insert the value “9:20" into a column named arrival time, the SAP ASE server converts
the entry into “Jan 11900 9:20AM.” If you look for this entry using the equality operator, it is not found:

where arrival time = "9:20" /* does not match */

You can find the entry using the 1ike operator:

where arrival time like "%9:20%"

When using 1ike, the SAP ASE server first converts the dates to datetime or date format and then to
varchar. The display format consists of the 3-character month in the current language, 2 characters for the
day, 4 characters for the year, the time in hours and minutes, and “AM” or “PM.”

When searching with 1ike, you cannot use the wide variety of input formats that are available for entering the
date portion of datetime, smalldatetime, bigdatetime, bigtime, date, and time values. You cannot
search for seconds or milliseconds with 1ike and match a pattern, unless you are also using <style>9 or 109
and the convert function.

If you are using 1ike, and the day of the month is a number between 1and 9, insert 2 spaces between the
month and the day to match the varchar conversion of the datetime value. Similarly, if the hour is less than
10, the conversion places 2 spaces between the year and the hour. The following clause with 1 space between
“May” and “2") finds all dates from May 20 through May 29, but not May 2:

like "May 2%"

You do not need to insert the extra space with other date comparisons, only with 1ike, since the datetime
values are converted to varchar only for the 1ike comparison.

2.1.5.2.7 Manipulating Dates

You can do some arithmetic calculations on date and time datatypes values with the built-in date functions.

See Transact-SQL Users Guide.

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 25

215.3 Standards and Compliance

ANSI SQL — Compliance level: The datetime and smalldatetime datatypes are Transact-SQL extensions.
date and time datatypes are entry-level compliant.

2.1.6 Character Datatypes

Character datatypes store strings consisting of letters, numbers, and symbols, and can store a maximum of a
page size worth of data.

Which character datatype you use for a situation depends on the type of data you are storing.

Character Datatype Usage

varchar (n) and Both single-byte character sets such as us_english and for multibyte character

char (n) sets such as Japanese.

unichar (n) and Use to store Unicode characters. They are useful for single-byte or multibyte

univarchar(n) characters when you need a fixed number of bytes per character.

nchar (n) and

nvarchar (n)

The fixed-length datatype, nchar (n) , and the variable-length datatype,
nvarchar (n), for both single-byte and multibyte character sets, such as
Japanese. The difference between nchar (n) and char (n) and nvarchar (n)
and varchar (n) is that both nchar (n) and nvarchar (n) allocate storage
based on <n> times the number of bytes per character (based on the default
character set). char (n) and varchar (n) allocate <n> bytes of storage.

text The text datatype — or multiple rows in a subtable — for strings longer than the

char or varchar datatype allow.

Related Information

text, image, and unitext Datatypes [page 33]

2.16.1 unichar and univarchar

You can use the unichar and univarchar datatypes anywhere that you can use char and varchar
character datatypes, without having to make syntax changes.

Queries containing character literals that cannot be represented in the server's character set are automatically
promoted to the unichar datatype so you do not have to make syntax changes for data manipulation
language (DML) statements. Additional syntax is available for specifying arbitrary characters in character
literals, but the decision to “promote” a literal to unichar is based solely on representability.

Reference Manual: Building Blocks
26 PUBLIC System and User-Defined Datatypes

With data definition language (DDL) statements, the syntax changes required are minimal. For example, in the
create table command, the size of a Unicode column is specified in units of 16-bit Unicode values, not
bytes, thereby maintaining the similarity between char (200) and unichar (200). sp_help, which reports on
the lengths of columns, uses the same units. The multiplication factor (2) is stored in the new global variable
<@@unicharsize>.

See Configuring Character Sets, Sort Orders, and Languages in the System Administration Guide for more
information about Unicode.

216.2 Length and Storage Size

Character variables strip the trailing spaces from strings when the variable is populated in a varchar column
of a cursor.

Use <n> to specify the number of bytes of storage for char and varchar datatypes. For unichar, use <n> to
specify the number of Unicode characters (the amount of storage allocated is 2 bytes per character). For
nchar and nvarchar, <n> is the number of characters (the amount of storage allocated is <n> times the
number of bytes per character for the server’s current default character set).

If you do not use <n> to specify the length:

® The default length is 1 byte for columns created with create table,alter table, and variables created
with declare.

e The default length is 30 bytes for values created with the convert function.

Entries shorter than the assigned length are blank-padded; entries longer than the assigned length are
truncated without warning, unless the string rtruncation option to the set command is set to on. Fixed-
length columns that allow nulls are internally converted to variable-length columns.

Use <n> to specify the maximum length in characters for the variable-length datatypes, varchar (n),
univarchar (n),and nvarchar (n). Datain variable-length columns is stripped of trailing blanks; storage
size is the actual length of the data entered. Data in variable-length variables and parameters retains all trailing
blanks, but is not padded to the defined length. Character literals are treated as variable-length datatypes.

Fixed-length columns tend to take more storage space than variable-length columns, but are accessed
somewhat faster. This table summarizes the storage requirements of the different character datatypes:

Datatype Stores Bytes of Storage

char (n) Character <n>

unichar (n) Unicode character <n>*@@<unicharsize> (Q@<unicharsize>equals2)
nchar (n) National character <n>* @@<ncharsize>

varchar (n) Character varying Actual number of characters entered

univarchar (n) Unicode character varying Actual number of characters * @@<unicharsize>
nvarchar (n) National character varying Actual number of characters * @@<ncharsize>

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 27

216.2.1 Determining Column Length with System
Functions

Use the char length string function and datalength system function to determine column length.

® char length returnsthe number of characters in the column, stripping trailing blanks for variable-length
datatypes.

® datalength returns the number of bytes, stripping trailing blanks for data stored in variable-length
columns.

When a char value is declared to allow NULL values, the SAP ASE server stores it internally as a varchar.

If the min or max aggregate functions are used on a char column, the result returned is varchar, and is
therefore stripped of all trailing spaces.

216.3 Entering Character Data

Character strings must be enclosed in single or double quotes. If you use set quoted identifier on, use
single quotes for character strings; otherwise, the SAP ASE server treats them as identifiers.

Strings that include the double-quote character should be surrounded by single quotes. Strings that include
the single-quote character should be surrounded by double quotes. For example:

'George said, "There must be a better way."'
"Isn't there a better way?"

An alternative is to enter two quotation marks for each quotation mark you want to include in the string. For
example:

"George said, ""There must be a better way.""
'Isn''t there a better way?'

To continue a character string onto the next line of your screen, enter a backslash (\) before going to the next
line.

For more information about quoted identifiers, see the section Delimited Identifiers of the Transact SQL User’s
Guide.

216.3.1 Entering Unicode Characters

Optional syntax allows you to specify arbitrary Unicode characters.

If a character literal is immediately preceded by U& or u& (with no intervening white space), the parser
recognizes escape sequences within the literal. An escape sequence of the form \xxxx (where xxxx represents
four hexadecimal digits) is replaced with the Unicode character whose scalar value is xxxx. Similarly, an escape
sequence of the form \+yyyyyy is replaced with the Unicode character whose scalar value is yyyyyy. The
escape sequence \\ is replaced by a single \. For example, the following is equivalent to:

Reference Manual: Building Blocks
28 PUBLIC System and User-Defined Datatypes

select * from mytable where unichar_column = ' _'E—L '

select * from mytable where unichar column = U&'\4e94'

The U& or u& prefix simply enables the recognition of escapes. The datatype of the literal is chosen solely on
the basis of representability. Thus, for example, the following two queries are equivalent:

select * from mytable where char column = 'A'

select * from mytable where char column = U&'\0041'

In both cases, the datatype of the character literal is char, since “A” is an ASCII character, and ASClI is a subset
of all SAP-supported server character sets.

The U& and u& prefixes also work with the double-quoted character literals and for quoted identifiers. However,
quoted identifiers must be representable in the server’s character set, insofar as all database objects are
identified by names in system tables, and all such names are of datatype char.

2.1.6.4 Example of Treatment of Blanks

Create a table named spaces that has both fixed- and variable-length character columns.

create table spaces (cnot char(5) not null,
cnull char(5) null,
vnot varchar (5) not null,
vnull varchar(5) null,
explanation varchar (25) not null)

insert spaces wvalues ("a", "b", "c", "d", "pads char-not-null only")
insert spaces values ("1 ", "2 ", "3 ", "4 ", "truncates trailing
blanks™)
insert spaces values (" e", " Tw, W g", " h", "leading blanks, no
change")
insert spaces values (" w ", " x ", " y ", " z ", "truncates trailing
blanks™)
insert spaces values ("", "", "", "" Tempty string equals space")
select "[" + cnot + "]",

ll[ll + cnull + ll}ll,

n [" + Vl'lOt + "] ",

n [ll + vnull + llJ ll,

explanation from spaces

explanation
[a 1 [b] [c] [d] pads char-not-null only
[1] [2] [3] [4] truncates trailing blanks
[e] [f] [gl [h] leading blanks, no change
[w] [x] [v] [z] truncates trailing blanks
[] [] [] [] empty string equals space

(5 rows affected)

This example illustrates how the column'’s datatype and null type interact to determine how blank spaces are
treated:

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 29

® Only charnot nullandncharnot null columns are padded to the full width of the column; char
null columns are treated like varchar and nchar null columns are treated like nvarchar.

® Onlyunicharnot null columns are padded to the full width of the column; unichar null columns are
treated like univarchar.

® Preceding blanks are not affected.

e Trailing blanks are truncated except for char, unichar, and nchar not null columns.

® The empty string (" ") is treated as a single space. In char, nchar, and unichar not null columns, the
result is a column-length field of spaces.

2.1.6.5 Manipulating Character Data

You can use the 1ike keyword to search character strings for particular characters and the built-in string
functions to manipulate their contents.

You can use strings consisting of numbers for arithmetic after being converted to exact and approximate
numeric datatypes with the convert function.

2.1.6.6 Standards and Compliance for Character Datatypes

ANSI SQL — Compliance level: Transact-SQL provides the char and varchar ANSI SQL datatypes. The nchar,
nvarchar, unichar, and univarchar datatypes are Transact-SQL extensions.

2.1.7 Binary Datatypes

Use the binary datatypes, binary(n) and varbinary (n), to store raw binary data, such as pictures, in a raw
binary notation, up to the maximum column size for your server’s logical page size.

The binary and varbinary datatypes are Transact-SQL extensions.

2171 Valid binary and varbinary Entries

Binary data begins with the characters “Ox” and can include any combination of digits, and the uppercase and
lowercase letters A through F.

Use <n> to specify the column length in bytes, or use the default length of 1 byte. Each byte stores 2 binary
digits. If you enter a value longer than <n>, the SAP ASE server truncates the entry to the specified length
without warning or error.

Use the fixed-length binary type, binary (n), for data in which all entries are expected to be approximately
equalin length.

Use the variable-length binary type, varbinary (n), for data that is expected to vary greatly in length.

Reference Manual: Building Blocks
30 PUBLIC System and User-Defined Datatypes

Because entries in binary columns are zero-padded to the column length (<n>), they may require more
storage space than those in varbinary columns, but they are accessed somewhat faster.

If you do not use <n> to specify the length:

® The default length is 1 byte for columns created with create table,alter table, andvariables created
with declare

e The default length is 30 bytes for values created with the convert function.

2.1.7.2 Entries of More than the Maximum Column Size

Use the image datatype to store larger blocks of binary data (up to 2,147,483,647 bytes) on external data
pages.

You cannot use the image datatype for variables or for parameters in stored procedures.

Related Information

text, image, and unitext Datatypes [page 33]

2173 Treatment of Trailing Zeros

Allbinary not null columns are padded with zeros to the full width of the column. Trailing zeros are
truncated inall varbinary dataand inbinary null columns, since columns that accept null values must be
treated as variable-length columns.

The following example creates a table with all four variations of binary and varbinary datatypes, NULL, and
NOT NULL. The same data is inserted in all four columns and is padded or truncated according to the datatype
of the column.

create table zeros (bnot binary(5) not null,
bnull binary(5) null,
vnot varbinary(5) not null,
vnull varbinary(5) null)
insert zeros values (0x12345000, 0x12345000, 0x12345000, 0x12345000)
insert zeros values (0x123, 0x123, 0x123, 0x123)
select * from zeros

bnot bnull vnot vnull
0x1234500000 0x123450 0x123450 0x123450
0x0123000000 0x0123 0x0123 0x0123

Because each byte of storage holds 2 binary digits, the SAP ASE server expects binary entries to consist of the
characters “Ox" followed by an even number of digits. When the “Ox" is followed by an odd number of digits,
the SAP ASE server assumes that you omitted the leading O and adds it for you.

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 31

Input values “Ox00" and “Ox0" are stored as “Ox00" in variable-length binary columns (binary null, image,
and varbinary columns). In fixed-length binary (binary not null) columns, the value is padded with zeros
to the full length of the field:

insert zeros values (0x0, 0x0,0x0, 0x0)

select * from zeros where bnot = 0x00
bnot bnull vnot vnull
0x0000000000 0x00 0x00 0x00

If the input value does not include the “Ox", the SAP ASE server assumes that the value is an ASCII value and
converts it. For example:

create table sample (col a binary(8))
insert sample values (’002710000000aelb’)
select * from sample

0x3030323731303030

2.1.74 Platform Dependence

The exact form in which you enter a particular value depends upon the platform you are using. Therefore,
calculations involving binary data can produce different results on different machines.

You cannot use the aggregate functions sum or avg with the binary datatypes.

For platform-independent conversions between hexadecimal strings and integers, use the inttohex and
hextoint functions rather than the platform-specific convert function. For details, see Transact-SQL Users
Guide.

2.1.8 bit Datatype

Use the bit datatype for columns that contain true/false and yes/no types of data. The status columnin the
syscolumns system table indicates the unique offset position for bit datatype columns.

bit columns hold either O or 1. Integer values other than O or 1 are accepted, but are always interpreted as 1.

Storage size is 1 byte. Multiple bit datatypes in a table are collected into bytes. For example, 7 bit columns fit
into 1 byte; 9 bit columns take 2 bytes.

Columns with a datatype of bit cannot be NULL and cannot have indexes on them.

The bit datatype is a Transact-SQL extension.

Reference Manual: Building Blocks
32 PUBLIC System and User-Defined Datatypes

2.1.9 sysname and longsysname Datatypes

sysname and longsysname are user-defined datatypes that are distributed on the SAP ASE installation media
and used in the system tables.

The definitions are:

® sysname —varchar (30) "not null"

® Jlongsysname —varchar (255) "not null"

You can declare a column, parameter, or variable to be of types sysname and 1ongsysname. Alternately, you
can also create a user-defined datatype with a base type of sysname and longsysname, and then define
columns, parameters, and variables with the user-defined datatype.

All user-defined datatypes, including sysname and 1ongsysname, are Transact-SQL extensions.

2.1.10 text, image, and unitext Datatypes

text columns are variable-length columns that can hold up to 2,147.483,647 (231 - 1) bytes of printable
characters.

The variable-length unitext datatype can hold up to 1,073,741,823 Unicode characters (2,147,483,646 bytes).
image columns are variable-length columns that can hold up to 2,147.483,647 (23! - 1) bytes of raw binary data.

A key distinction between text and image is that text is subject to character-set conversion if you are not
using the default character set of SAP ASE. image is not subject to character-set conversion.

Define a text, unitext, or image column as you would any other column, with a create tableoralter
table statement. text, unitext, or image datatype definitions do not include lengths. text, unitext, and
image columns do permit null values. Their column definition takes the form:

<column name> {text | image | unitext} [null]

For example, the create table statement for the author’'s blurbs table in the pubs2 database with a text
column, blurb, that permits null values, is:

create table blurbs
(au_id id not null,
copy text null)

This example creates a unitext column that allows null values:
create table tb (ut unitext null)
To create the au_pix table in the pubs2 database with an image column:

create table au pix

(au_id char (11) not null,
pic image null,

format type char (11) null,
bytesize int null,

pixwidth hor char (14) null,

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 33

pixwidth vert char (14) null)

The SAP ASE server stores text, unitext, and image data in a linked list of data pages that are separate from
the rest of the table. Each text, unitext, or image page stores one logical page size worth of data (2, 4, 8, or
16K). All text, unitext, and image data for a table is stored in a single page chain, regardless of the number
of text, unitext, and image columns the table contains.

You can place subsequent allocations for text, unitext, and image data pages on a different logical device
with sp_placeobject.

image values that have an odd number of hexadecimal digits are padded with a leading zero (an insert of
“Oxaaabb” becomes “Ox0aaabb™).

You can use the partition optionofthe alter table command to partition a table that contains text,
unitext, and image columns. Partitioning the table creates additional page chains for the other columns in
the table, but has no effect on the way the text, unitext, and image columns are stored.

You can use unitext anywhere you use the text datatype, with the same semantics. unitext columns are
stored in UTF-16 encoding, regardless of the SAP ASE default character set.

2.1.10.1 Data Structures Used for Storing text, unitext, and
image Data

When you allocate text, unitext, or image data, a 16-byte text pointer is inserted into the row you allocated. Part
of this text pointer refers to a text page number at the head of the text, unitext, or image data. This text pointer
is known as the first text page.

The first text page contains two parts:

® The text data page chain, which contains the text and image data and is a double-linked list of text pages
e The optional text-node structure, which is used to access the user text data

Once an first text page is allocated for text, unitext, or image data, it is never deallocated. If an update to an
existing text, unitext,or image data row results in fewer text pages than are currently allocated for this
text, unitext, or image data, the SAP ASE server deallocates the extra text pages. If an update to text,
unitext, or image data sets the value to NULL, all pages except the first text page are deallocated.

This figure shows the relationship between the data row and the text pages.

Data row
C_int | C_text | C_fbat | C_image | C_char |«---------- Includes 5
¢ * columns
First text --------) [Data text
)
page > * page
vl s
(o))
— [p—
£
©°
v | B v
g
/£ \

Reference Manual: Building Blocks
34 PUBLIC System and User-Defined Datatypes

In the figure, columns c_text and ¢_image are text and image columns containing the pages at the bottom of
the picture.

2.1.10.2 Initialize text, unitext, and image Columns

text, unitext, and image columns are not initialized until you update them or insert a non-null value.
Initialization allocates at least one data page for each non-null text, unitext, or image data value. It also creates
a pointer in the table to the location of the text, unitext, or image data.

For example, the following statements create the table testtext and initialize the blurb column by inserting
anon-null value. The column now has a valid text pointer, and the first text page has been allocated.

create table texttest
(title id varchar(6), blurb text null, pub id char(4))

insert texttest values
("BU7832", "Straight Talk About Computers is an annotated analysis of what
computers can do for you: a no-hype guide for the critical user.", "1389")

The following statements create a table for image values and initialize the image column:

create table imagetest
(image id varchar (6), imagecol image null, graphic id char (4))

insert imagetest values
("94732", 0x0000008300000000000100000000013¢c, "1389")

i Note

Surround text values with quotation marks and precede image values with the characters “Ox"

For information on inserting and updating text, unitext, and image data with Client-Library programs, see
the Client-Library/C Reference Manual.

2.1.10.2.1 Define unitext Columns

You can define a unitext column the same way you define other datatypes, using create tableoralter
table statements. You do not define the length of a unitext column, and the column can be null.

This example creates a unitext column that allows null values:

create table tb (ut unitext null)

The default unicode sort order defines the sort order for unitext columns for pattern matching in 1ike clauses
and in the patindex function, this is independent of the SAP ASE default sort order.

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 35

2.1.10.3 Save Space by Allowing NULL

To save storage space for empty text, unitext, or image columns, define them to permit null values and insert
nulls until you use the column. Inserting a null value does not initialize a text, unitext, or image column and,
therefore, does not create a text pointer or allocate storage.

For example, the following statement inserts values into the title idand pub_idcolumns of the testtext
table created above, but does not initialize the blurb text column:

insert texttest
(title id, pub_id) values ("BU7832", "1389")

2.1.10.4 Obtain Information from sysindexes

Each table with text, unitext, or image columns has an additional row in sysindexes that provides
information about these columns. The name column in sysindexes uses the form “tablename.” The indidis
always 255.

These columns provide information about text storage:

Column Description

ioampg Pointer to the allocation page for the text page chain
first Pointer to the first page of text data

root Pointer to the last page

segment Number of the segment where the object resides

You can query the sysindexes table for information about these columns. For example, the following query
reports the number of data pages used by the blurbs table in the pubs2 database:

select name, data pages(db id(), object id("blurbs"), indid)
from sysindexes
where name = "tblurbs"

i Note

The system tables poster shows a one-to-one relationship between sysindexes and systabstats. This
is correct, except for text and image columns, for which information is not kept in systabstats.

Reference Manual: Building Blocks
36 PUBLIC System and User-Defined Datatypes

2.1.10.5 Using readtext and writetext

Before you can use writetext to enter text data or readtext to read it, you must initialize the text column.

Using update to replace existing text, unitext, and image data with NULL reclaims all allocated data pages
except the first page, which remains available for future use of writetext. To deallocate all storage for the row,
use delete to remove the entire row.

There are restrictions for using readtext and writetext on a column defined for unitext.

For more information, see readtext and writetext in the Reference Manual: Commands.

2.1.10.6 Determine How Much Space a Column Uses

sp_spaceused provides information about the space used for text data as index_size.

sp_spaceused blurbs

name rowtotal reserved data index size unused

2.1.10.7 Restrictions on text, image, and unitext Columns

You cannot use text, image, Or unitext columnsin some places.

® order by, compute, group by, and union clauses
e Anindex

e Subqueries or joins

® Awhere clause, except with the keyword 1ike

In triggers, both the inserted and deleted text values reference the new value; you cannot reference the old
value.

2.1.10.8 Selecting text, unitext, and image Data

text, unitext, and image values can be quite large. When the select list includes text and image values, the
limit on the length of the data returned depends on the setting of the @@textsize global variable, which
contains the limit on the number of bytes of text or image data a select returns.

The default limit is 32K bytes for i sql; the default depends on the client software. Change the value for a
session with set textsize.

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 37

These global variables return information on text, unitext, and image data:

Variable Explanation

@@<textptr> Thg text pointer of the last text, unitext, or image column inserted or updated by a

process. Do not confuse this global variable with the textptr function.

@@<textcolid> | ofthe column referenced by @@<textptrs.

@@<textdbid> |p f 5 database containing the object with the column referenced by @@<textptr>.

@@<textobjid> b 4f the object containing the column referenced by @e<textptrs.

@@<textsize> . rentvalue of the set textsize option, which specifies the maximum length, in bytes,
of text, unitext, or image data to be returned with a select statement. It defaults to
32K. The maximum size for @@<textsize>is 231-1(thatis, 2,147.483,647).

Q@<textts>

Text timestamp of the column referenced by @@<textptr>.

2.1.10.9 Converting text and image Datatypes

You can explicitly convert text values to char, unichar, varchar, and univarchar, and image values to
binary or varbinary with the convert function, but you are limited to the maximum length of the character and
binary datatypes, which is determined by the maximum column size for your server's logical page size.

If you do not specify the length, the converted value has a default length of 30 bytes. Implicit conversion is not
supported.

2.1.10.10 Converting to or from Unitext

You can implicitly convert any character or binary datatype to unitext, as well as explicitly convert to and
from unitext to other datatypes. The conversion result, however, is limited to the maximum length of the
destination datatype.

When a unitext value cannot fit the destination buffer on a Unicode character boundary, data is truncated. If
you have enabled enable surrogate processing, the unitext value is never truncated in the middle of a
surrogate pair of values, which means that fewer bytes may be returned after the datatype conversion. For
example, if a unitext column ut in table tb stores the string “U+0041U+0042U+00c2"” (U+0041 representing
the Unicode character “A"), this query returns the value “AB" if the server's character set is UTF-8, because U
+00C2 is converted to 2-byte UTF-8 Oxc382:

select convert (char(3), ut) from tb

Reference Manual: Building Blocks
38 PUBLIC System and User-Defined Datatypes

Conversion Datatypes

These datatypes convert implicitly to unitext char,varchar,unichar,univarchar, binary,

varbinary, text, image

These datatypes convert implicitly from unitext text, image
These datatypes convert explicitly from unitext char,varchar,unichar,univarchar,binary,
varbinary

The alter table modifycommand does not support text, image, or unitext columns to be the modified
column. To migrate from a text to a unitext column:

® Usebcp out -Jutf8outtocopy text column dataout
e C(Create a table with unitext columns
® Usebcp in -Jutf8toinsertdataintothe new table

2.1.10.11 Pattern Matching in text Data

Use the patindex function to search for the starting position of the first occurrence of a specified patternin a
text,unitext, varchar, univarchar, unichar, or char column. The % wildcard character must precede
and follow the pattern (except when you are searching for the first or last character).

You can also use the 1ike keyword to search for a particular pattern. The following example selects each text
data value from the copy column of the blurbs table that contains the pattern “Net Etiquette.”

select copy from blurbs
where copy like "$Net Etiquette$"

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 39

2.1.10.12 Duplicate Rows

The pointer to the text, image, and unitext data uniquely identifies each row. Therefore, a table that contains
text, image, and unitext data does not contain duplicate rows unless there are rows in which all text, image, and
unitext data is NULL. If this is the case, the pointer has not been initialized.

2.1.10.13 Using Large Object text, unitext, and image
Datatypes in Stored Procedures

The SAP ASE server allows you to declare a large object (LOB) text, image, or unitext datatype for a local
variable, and pass that variable as an input parameter to a stored procedure, as well as prepare SQL
statements that include LOB parameters.

The SAP ASE server caches SQL statements using LOB when you enable the statement cache. See Configuring
Memory in the System Administration Guide, Volume 2.

These restrictions apply to using LOBs in stored procedures.

e | OB parameters are not supported for replication.
® You cannot use LOB datatype for execute immediate and deferred compilation.

2.1.10.13.1 Declaring a LOB Datatype

Use the declare function to declare an LOB datatype for a local variable.

=, Syntax
declare @<variable> <LOB_datatype>

<LOB_datatype>

isone of: text, image, and unitext.

Example

This example declares the <text variable> as text datatype:

declare Q@text variable text

Reference Manual: Building Blocks
40 PUBLIC System and User-Defined Datatypes

2.1.10.13.2 Creating a LOB Parameter

Use the create procedure command to create an LOB parameter.
=, Syntax

create procedure <proc name> [@<parameter name> <LOB datatype>
as {<SQL statement>}

Example

This example creates the new_proc procedure, which uses the text LOB datatype:

create procedure new proc @vl text
as
select char length (@vl)

2.1.10.13.3 Examples for Using LOB Datatypes

Use LOB datatypes as the input parameter for a stored procedure, or in a text function.

Example: Example 1

Uses an LOB as the input parameter for a stored procedure:

1. Create table 1:

create table tl (al int, a2 text)
insert into tl wvalues(l, "aaaa")
insert into tl values (2, "bbbb")
insert into tl values (3, "cccc")

2. Create a stored procedure using an LOB local variable as a parameter:

create procedure my procedure @new var text
as select @new_var

3. Declare the local variable and execute the stored procedure.

declare Qa text
select @a = a2 from tl where al = 3
exec my procedure Q@a

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC

41

Example: Example 2

Uses an LOB variable in a text function:

declare (@Qa text
select @a = "abcdefgh"
select datalength (@a)

Example: Example 3

Declares an LOB text local variable:

declare (@a text
select Ra = '<doc><item><id>1</id><name>Box</name></item>'
+'<item><id>2</id><name>Jar</name></item></doc>"'
select id from xmltable ('/doc/item' passing Qa
columns id int path 'id', name varchar (20) path 'name')
as items table

And then passes the same LOB parameters to a stored procedure:

create proc prl Qa text

as
select id from xmltable ('/doc/item' passing Qa
columns id int path 'id', name varchar (20) path 'name') as items table

declare @a text

select @a =
'<doc><item><id>1</id><name>Box</name></item>"'
+'<item><id>2</id><name>Jar</name></item></doc>"

Reference Manual: Building Blocks
42 PUBLIC System and User-Defined Datatypes

2.1.10.14 Standards and Compliance

ANSI SQL - Compliance level: The text, image, and unitext datatypes are Transact-SQL extensions.

2.2 Range and Storage Size

The range of valid values and storage size differ with each system-supplied datatypes.

For simplicity, the datatypes are printed in lowercase characters, although the SAP ASE server allows you to
use either uppercase or lowercase characters for system datatypes.

User-defined datatypes, such as timestamp, are case-sensitive. Most SAP ASE-supplied datatypes are not
reserved words; you can use them to name other objects.

Table 2: Range and Storage Size of Exact Numeric Integer System Datatypes

Datatype Range Bytes of Storage
bigint Whole numbers between 263 and -263 - 1 (from 8
-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807, inclu-
sive.
int 231-1(2,147483,647) to -231 (-2,147483,648 4

Synonym: integer

smallint 215-1(32,767) to -215 (-32,768) 2
tinyint 0 to 255 (Negative numbers are not permitted) 1
unsigned bigint Whole numbers between O and 18,446,744,073,709,551,615 8
unsigned int Whole numbers between O and 4,294,967,295 4
unsigned Whole numbers between O and 65535 2
smallint

Table 3: Range and Storage Size of Exact Numeric Decimal System Datatypes

Datatype Range Bytes of storage
numeric (p, s) 1038 -1to0 -1038 2tol7
decimal (p, s) 1038 -1t0 -1038 2tol7

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC

Table 4: Range and Storage Size of Approximate Numeric System Datatypes

Datatype Range Bytes of storage

float (precision) machine dependent e Adfordefault precision <16

e gfordefault precision>=16

double precision machine dependent 8

real machine dependent 4

Table 5: Range and Storage Size of Money Datatypes

Datatype Range Bytes of storage
smallmoney 214,748.3647 to -214,748.3648 4
money 922,337,203,685,477.5807 to -922,337,203,685,477.5808 8

Table 6: Range and Storage Size of Date/Time System Datatypes

Datatype Range Bytes of storage
smalldatetime January 1, 1900 to June 6, 2079 4
datetime January 1, 1753 to December 31, 9999 8
date January 1, 0001 to December 31, 9999 4
time 12:00:00AM to 11:59:59:990PM 4
bigdatetime January 1, 0001 to December 31, 9999 and 12:00.000000AM to 8

11:59:59.999999 PM

bigtime 12:00:00.000000 AM t0 11:59:59.999999 PM 8

Table 7: Range and Storage Size of Character System Datatypes

Datatype Synonyms Range Bytes of storage

char (n) character pagesize n

varchar (n) character varying, char pagesize actual entry length
varying

unichar Unicode character pagesize <n>* <@@unicharsize>

(<@@unicharsize>equals 2)

univarchar Unicode character varying, char pagesize actual number of characters *

varying <@Qunicharsize>

Reference Manual: Building Blocks
44 PUBLIC System and User-Defined Datatypes

Datatype Synonyms Range Bytes of storage

nchar (n) national character, pagesize <n>*<@@ncharsize>

national char

nvarchar (n) nchar varying,national pagesize <@@ncharsize>* number of

char varying, national characters

character varying

text 231-1(2,147483,647) bytes 0 when uninitialized; multiple
or fewer of 2K after initialization
unitext 1-1,073,741,823 0 when uninitialized; multiple

of 2K after initialization

Table 8: Range and Storage Size of Binary System Datatypes

Datatype Range Bytes of storage

binary (n) pagesize <n>

varbinary (n) pagesize actual entry length

image 231-1(2,147483,647) bytes or fewer 0 when uninitialized; multiple of 2K after initiali-
zation

Table 9: Range and Storage Size of Bit System Datatypes

Datatype Range Bytes of storage

bit Oorl 1 (one byte holds up to 8 bit columns)

2.3 Datatypes of Columns, Variables, or Parameters

You must declare the datatype for a column, local variable, or parameter. The datatype can be any of the
system-supplied datatypes, or any user-defined datatype in the database.

2.3.1 Declaring Datatypes for a Column in a Table

Declare the datatype of anew columninacreate tableoralter table statement.
=, Syntax

create table [[<database>.]<owner>.]<table name>
(<column name> <datatype> [identity | not null | null]
[, <column name> <datatype> [identity | not null |

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC

45

nulll]...)

alter table [[<database>.]<owner>.]<table name>
add <column name datatype> [identity | null
[, <column name> <datatype> [identity | null]...

Example

For example:

create table sales daily
(stor id char(4)not null,
ord num numeric (10,0)identity,
ord amt money null)

You can also declare the datatype of a new columnina select into statement, use convert orcast:

select convert (double precision, x), cast (int, y) into
newtable from oldtable

2.3.2 Declaring Datatypes for Local Variable in a Batch or
Procedure
Use the declare function to declare the datatype for a local variable in a batch or stored procedure.
=, Syntax

declare <@variable name> <datatype>
[, <@variable name> <datatype>]...

Example

For example:

declare @hope money

Reference Manual: Building Blocks
46 PUBLIC System and User-Defined Datatypes

2.3.3 Declaring Datatypes for a Parameter in a Stored
Procedure

Use the declare function to declare the datatype for a parameter in a stored procedure.

=, Syntax
create procedure [<owner>.]<procedure name> [;n<umber>]
[[(]@<parameter name> <datatype> [= default] [output]
[, @<parameter name> <datatype> [= default]
[output]]...[)]1]

[with recompile]
as <SQL statements>

Example

For example:

create procedure auname sp (@auname varchar (40)
as

select au lname, title, au ord

from authors, titles, titleauthor

where @auname = au_lname

and authors.au id = titleauthor.au id

and titles.title id = titleauthor.title id

2.3.4 Determine the Datatype of Numeric Literals

Numeric literals entered with E notation are treated as f1oat; all others are treated as exact numerics.

e |iterals between 23! - 1 and -23! with no decimal point are treated as integer.

e |jterals that include a decimal point, or that fall outside the range for integers, are treated as numeric.

i Note

To preserve backward compatibility, use E notation for numeric literals that should be treated as
float.

2.3.5 Determine the Datatype of Character Literals

You cannot declare the datatype of a character literal. SAP ASE treats character literals as varchar, except
those that contain characters that cannot be converted to the server's default character set.

Such literals are treated as univarchar. This makes it possible to perform such queries as selecting unichar
datain a server configured for “iso_1" using a “sjis” (Japanese) client. For example:

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 47

select * from mytable where unichar_column = ' _'E—L '

Since the character literal cannot be represented using the char datatype (in “iso_1"), it is promoted to the
unichar datatype, and the query succeeds.

2.4 Datatypes of Mixed-Mode Expressions

When you perform concatenation or mixed-mode arithmetic on values with different datatypes, the SAP ASE
server must determine the datatype, length, and precision of the result.

2.4.1 Determine the Datatype Hierarchy

Each system datatype has a datatype hierarchy, which is stored in the systypes system table. User-defined
datatypes inherit the hierarchy of the system datatype on which they are based.

The datatype hierarchy applies only to computations or expressions involving numeric datatypes. SAP ASE
converts all terms involved first to the datatype highest in the hierarchy before the expression is evaluated or
the comparison is performed. For example, when adding and int to a float, the resulting sum has a float
datatype.

That is, the SAP ASE server considers the datetime value “20-Nov-2012 23:24:25" equal to the date value
“20-Nov-2012" since it compares only the date component (in this case, the string “20-Nov-2012").

This is compliant with the ANSI SQL standard.

The following query ranks the datatypes in a database by hierarchy. In addition to the information shown below,
your query results include information about any user-defined datatypes in the database:

select name, hierarchy
from systypes
order by hierarchy

name hierarchy
floatn 1
float 2
datetimn 3
datetime 4
real 5
numericn 6
numeric 7
decimaln 8
decimal 9
moneyn 10
money 11
smallmoney 12

Reference Manual: Building Blocks
48 PUBLIC System and User-Defined Datatypes

smalldatet 13

intn 14
uintn 15
bigint 16
ubigint 17
int 18
uint 19
smallint 20
usmallint 21
tinyint 22
bit 23
univarchar 24
unichar 25
unitext 26
sysname 27
varchar 27
nvarchar 27
longsysnam 27
char 28
nchar 28
timestamp 29
varbinary 29
binary 30
text 31
image 32
date 33
time 34
daten 35
timen 36
bigdatetime 37
bigtime 38
bigdatetimen 39
bigtimen 40
xml 41
extended time 99
i Note

u<int_ type> is aninternal representation. The correct syntax for unsigned types is unsigned {int |

integer | bigint | smallint }
The datatype hierarchy determines the results of computations using values of different datatypes. The result
value is assigned the datatype that is closest to the top of the list or has the least hierarchical value.

In this example, <gty> from the sales tableis multiplied by royalty fromthe royschedtable. gtyisa
smallint, which has a hierarchy of 20; royaltyis an int, which has a hierarchy of 18. Therefore, the
datatype of the resultis an int:

smallint (gty) * int(royalty) = int

2.4.2 Determine Precision and Scale

For numeric and decimal datatypes, each combination of precision and scale is a distinct SAP ASE datatype.
If you perform arithmetic ontwo numeric or decimal values:

® <nl1> with precision <p1>and scale <s1>, and

® <n2> with precision <p2> and scale <n2>

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 49

SAP ASE determines the precision and scale of the results:

Operation Precision Scale

nl+n2 max(sl, s2) + max(pl-sl, p2-s2)+1 max(sl, s2)

nl-n2 max(sl, s2) + max(pl-sl, p2-s2)+1 max(sl, s2)

nl*n2 sl+s2+(pl-sl)+(p2-s2)+1 sl+s2

nl/n2 max(sl+p2+1,6)+pl-sl+p2 max(sl+p2-s2+1,6)

2.5 Datatype Conversions

Many conversions from one datatype to another are handled automatically by the SAP ASE server. These are
called implicit conversions. Other conversions must be performed explicitly with the convert, hextoint,
intttohex, hextobigint, bintostr, strtobin, and biginttohex functions.

See Transact-SQL Users Guide for details about datatype conversions supported by the SAP ASE server.

2.5.1 Automatic Conversion of Fixed-Length NULL Columns

Only columns with variable-length datatypes can store null values. When you create a NULL column with a
fixed-length datatype, the SAP ASE server automatically converts it to the corresponding variable-length
datatype. The SAP ASE server does not inform the user of the datatype change.

This table lists the fixed- and variable-length datatypes to which they are converted. Certain variable-length
datatypes, such asmoneyn, are reserved datatypes; you cannot use them to create columns, variables, or
parameters:

Original Fixed-Length Datatype Converted to
char varchar
unichar univarchar
nchar nvarchar
binary varbinary
datetime datetimn
date daten

time timen

Reference Manual: Building Blocks
50 PUBLIC System and User-Defined Datatypes

Original Fixed-Length Datatype Converted to

float floatn
bigint,int, smallint,and tinyint intn
unsigned bigint,unsigned int,andunsigned smallint uintn
decimal decimaln
numeric numericn
money and smallmoney moneyn

2.5.2 Handling Overflow and Truncation Errors

Arithmetic overflow errors can result from a number of datatype conversions.

2.5.21 Determining Server Behavior During an Arithmetic
Error

The arithabort option determines how the SAP ASE server behaves when an arithmetic error occurs.

Thetwo arithabort options, arithabort arith overflowandarithabort numeric truncation
handle different types of arithmetic errors.

You can set each option independently, or set both options with a single set arithabort onor set
arithabort off statement.

® arithabort arith overflow specifies behavior following a divide-by-zero error or a loss of precision
during either an explicit or an implicit datatype conversion. This type of error is considered serious. The
default setting, arithabort arith overflow on, rolls back the entire transaction in which the error
occurs. If the error occurs in a batch that does not contain a transaction, arithabort arith overflow
on does not roll back earlier commands in the batch, but the SAP ASE server does not execute any
statements that follow the error-generating statement in the batch.
Setting arith overflow to on refers to the execution time, not to the level of normalization to which the
SAP ASE server is set.
Ifyousetarithabort arith overflow off, the SAP ASE server aborts the statement that causes the
error, but continues to process other statements in the transaction or batch.

® arithabort numeric_ truncation specifies behavior following aloss of scale by an exact numeric
datatype during an implicit datatype conversion. (When an explicit conversion results in a loss of scale, the
results are truncated without warning.) The default setting, arithabort numeric truncation on,
aborts the statement that causes the error but continues to process other statements in the transaction or
batch. If you set arithabort numeric truncation off,the SAP ASE server truncates the query
results and continues processing.

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 51

The arithignore option determines whether the SAP ASE server prints a warning message after an overflow
error. By default, the arithignore optionis turned of £. This causes the SAP ASE server to display a warning
message after any query that results in numeric overflow. To ignore overflow errors, use set arithignore

on.

2.5.2.2 Resolving Arithmetic Overflow Errors from the
round Function

SAP ASE may issue an arithmetic overflow error when convertingabigint value to an int.

Use the exception on rounding overflow configuration parameter to determine if the round function
produces an overflow error. Enabling exception on rounding overflow means the serverreturnsa
overflow error, disabling this parameter means the server returns a value of O when the server converts a
bigint value to aninteger.

For example, if tablebig table includes columns int 4 and char 10 with this data:

-2147483648 004
2147483647 005

007
008
009
010
011
012

[eNeoNoNoNoNoNe]

When exception on rounding overflow is settothe default (O), this query returns a result set of O:

select round(f int4, -7) from big table where char 10 = '005'

However, when you enable exception on rounding overflow

sp_configure 'exception on rounding', 1

and issue the same command, the server produces a arithmetic overflow when it attempts to convert the value
fromabigint to aninteger:

select round(f int4, -7) from blah where k char = '005"'
Msg 3606, Level 16, State 4:
Line 1:

Arithmetic overflow occurred.

Reference Manual: Building Blocks
52 PUBLIC System and User-Defined Datatypes

2.5.2.3 Resolving Arithmetic Overflow Errors from
Character Conversions

SAP ASE may produce arithmetic errors during some character conversions and produce dissimilar
transactional results.

For example, the first select query below hits the arithmetic overflow during normalization and the
transaction is not rolled back. However, the second select query below hits the arithmetic overflow while
executing the pan and aborts the transaction. Regardless, both transaction should produce the same value for
<@@trancount>:

create table tl (cl int)

go
begin tran

go

insert tl select 1
go

(1 row affected)

declare @int int

select @int=11111111111111111111111111

go

Msg 247, Level 16, State 1:

Server 'BIG SERVER, Line 2:

Arithmetic overflow during implicit conversion of NUMERIC value
'11111111111111111111111111" to a INT field

1> select @@trancount

2> go

(1 row affected)

1> select * from tl
2> go

cl

(1 row affected)

1> select convert (int, 3333333333333333333333333)

2> go

Msg 247, Level 16, State 1:

Server 'BIG SERVER, Line 1:

Arithmetic overflow during explicit conversion of NUMERIC value
'3333333333333333333333333"' to a INT field

1> select @@trancount

2> go

(1 row affected)
1> rollback
2> go

Enablingthe allow statement rollback configuration parameter prevents the arithmetic overflow errors
that cause dissimilar transactional results. Once enabled, the example above produces the same values for
@@trancount:

sp_configure 'allow statement rollback', 1

go
Parameter Name Default
Memory Used Config Value
Run Value Unit Type

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 53

allow statement rollback 0
0 1
1 number dynamic
(1 row affected)
Configuration option changed. ASE need not be rebooted since the option is
dynamic.
Changing the value of 'allow statement rollback' does not increase the amount of
memory Adaptive Server uses.

(return status = 0)

drop table tl

go

create table tl (cl int)
go

begin tran

insert tl select 1

go

(1 row affected)

declare @int int

select @int=111111111111111111112111111

go
Msg 247, Level 16, State 1:
Line 2:

Arithmetic overflow during implicit conversion of NUMERIC value
'11111111111111111111111111" to a INT field
select @@trancount

go

(1 row affected)
select * from tl
go

cl

(1 row affected)
select convert (int, 3333333333333333333333333)

go
Msg 247, Level 16, State 1:
Line 1:

Arithmetic overflow during explicit conversion of NUMERIC value
'3333333333333333333333333"' to a INT field

(0 rows affected)

select @@trancount

go

(1 row affected)

2.5.2.4 Resolving Arithmetic Overflow Errors Cause by a '?'
Parameter Marker

SAP ASE creates a query tree for a lightweight procedure without regard for subsequent datatype binding when
a prepared statement includes a 2 parameter marker as either an operand or a case statement result.

For example, if the parameter marker is resolved to a smallint datatype for a prepared statement that
includes an expression similar to this:

(? * smallint column)

Reference Manual: Building Blocks
54 PUBLIC System and User-Defined Datatypes

If the parameter is bound to an integer datatype and a value that is passed is greater than the maximum
allowed for a smallint, the server raises an arithmetic overflow error when the prepared statement is
executed:

Error 7332, Severity 15, State 1
The parameter marker ? is allowed only in an arithmetic expression when
configuration parameter 'restrict parameter markers' is OFF.

2.5.2.5 Resolving Scale Truncation Error Issues

The size of the result grows each time you apply a binary operator in an mathematical expression with data
types like decimal (38, 14), regardless of the size of the actual data.

SAP ASE includes a precision and scale adjustment policy for binary operators stating that, if the precision of
the result is greater than the maximum precision, the server automatically sets the scale to 6. However, the
server issues a truncation error if the number of significant digits is greater than the adjusted scale of 6.

For example, the scale is 7 in this query (that is, 7 places to the right of the decimal point), resulting in a
truncation error:

select power (cast (10 as decimal (38,14)), 0) * cast(1l.1234567 as decimal (38, 14))
Truncation error occurred.
Command has been aborted.

This query succeeds if you remove the 7th digit:

select power (cast (10 as decimal (38,14)), 0) * cast(l1.123456 as decimal (38, 14))

1.123456

2.6 Datatypes and Encrypted Columns

Some SAP ASE datatypes support encrypted columns, as well as the on-disk length of encrypted columns.

Max Encrypted Actual En- Max Encrypted
Data Length crypted Data Data Length Actual Encrypted
Input Data Encrypted (No init_vec- Length (No (With init_vec- Data Length
Datatype Length Column Type tor) init_vector) tor) (With init_vector)
date 4 varbinary 17 17 33 33
time 4 varbinary 17 17 33 33
smalldateti 4 varbinary 17 17 33 33

me

Reference Manual: Building Blocks
System and User-Defined Datatypes PUBLIC 55

Max Encrypted Actual En-

Data Length

crypted Data

Max Encrypted
Data Length

Actual Encrypted

Input Data Encrypted (No init_vec- Length (No (With init_vec- Data Length
Datatype Length Column Type tor) init_vector) tor) (With init_vector)
bigdatetime 8 varbinary 17 17 33 33
bigtime 8 varbinary 17 17 33 33
datetime 8 varbinary 17 17 33 33
smallmoney 4 varbinary 17 17 33 33
money 8 varbinary 17 17 33 33
bit 8 varbinary 17 17 33 33
bigint 8 varbinary 17 17 33 33
unsigned 8 varbinary 17 17 33 33
bigint
unichar (10) 2(lunichar varbinary 33 17 49 33
character)
unichar (10) 2010 varbinary 33 33 49 49
unichar
characters)
univarchar (2010 varbinary 49 33 65 49
20) unichar
characters)

The text, image, and unitext datatypes do not support encrypted columns.

2.7 User-Defined Datatypes

User-defined datatypes are built from the system datatypes and from the sysname or longsysname user-
defined datatypes.

After you create a user-defined datatype, you can use it to define columns, parameters, and variables. Objects
that are created from user-defined datatypes inherit the rules, defaults, null type, and IDENTITY property of the
user-defined datatype, as well as inheriting the defaults and null type of the system datatypes on which the
user-defined datatype is based.

You must create user-defined datatypes in each database in which they are to be used. Create frequently used
types in the mode1 database. These types are automatically added to each new database (including tempdb,
which is used for temporary tables) as it is created.

Reference Manual: Building Blocks

56 PUBLIC System and User-Defined Datatypes

The SAP ASE server allows you to create user-defined datatypes, based on any system datatype, using

sp_addtype. You cannot create a user-defined datatype based on another user-defined datatype, such as
timestamp or the tid datatype in the pubs2 database.

The sysname and 1longsysname datatypes are exceptions to this rule. Though sysname and 1ongsysname
are user-defined datatypes, you can use them to build user-defined datatypes.

You can create user-defined datatypes that are the maximum datatype length (versions of Adaptive Server
earlier than 15.7 SP121 restricted the length to the server page size). Use the @@maxvarlen global variable to
check the maximum possible variable length allowed when creating a user-defined datatype.

User-defined datatypes are database objects. Their names are case-sensitive and must conform to the rules

for identifiers.

You can bind rules to user-defined datatypes with sp_bindrule and bind defaults with sp_bindefault.

By default, objects built on a user-defined datatype inherit the user-defined datatype's null type or IDENTITY
property. You can override the null type or IDENTITY property in a column definition.

Use sp_rename to rename a user-defined datatype.

Use sp_droptype to remove a user-defined datatype from a database.

i Note

You cannot drop a datatype that is already in use in a table.

Use sp_help to display information about the properties of a system datatype or a user-defined datatype. You
can also use sp_help to display the datatype, length, precision, and scale for each column in a table.

The ANSI SQL compliance level for user-defined datatypes are a Transact-SQL extension.

2.8 Standards and Compliance

Transact-SQL datatypes are either ANSI SQL standards or user-defined.
Transact-SQL — ANSI SQL standards are:

char
varchar
smallint
int
bigint
decimal
numeric
float
real
date
time

double precision

Reference Manual: Building Blocks
System and User-Defined Datatypes

PUBLIC

57

Transact-SQL Extensions — user-defined datatypes are:

58

binary
varbinary

bit

nchar
datetime
smalldatetime
bigdatetime
bigtime
tinyint
unsigned smallint
unsigned int
unsigned bigint
money
smallmoney
text

unitext

image
nvarchar
unichar
univarchar
sysname
longsysname

timestamp

PUBLIC

Reference Manual: Building Blocks
System and User-Defined Datatypes

3 Transact-SQL Functions

Often used as part of a stored procedure or program, functions are allowed in the select list, in the where
clause, and anywhere an expression is allowed, and are used to return information from the database.

See the Using Transact-SQL Functions in Queries in the Transact-SQL Users Guide for detailed information
about how to use these functions.

See XML Services for detailed information about the XML functions: xmlextract, xmlparse,

xmlrepresentation, xmltable, xmltest,and xmlvalidate

The permission checks for Transact-SQL functions differ based on your granular permissions settings. See the
Security Administration Guide for more information on granular permissions.

31 abs

Returns the absolute value of an expression.

Syntax

abs (<numeric expression>)

Parameters

<numeric_expression>

is a column, variable, or expression with datatype that is an exact numeric, approximate
numeric, money, or any type that can be implicitly converted to one of these types.

Examples

Example 1

Returns the absolute value of -1:

select abs(-1)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 59

Usage

abs, a mathematical function, returns the absolute value of a given expression. Results are of the same type
and have the same precision and scale as the numeric expression.

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute abs.

Related Information

ceiling [page 89]
floor [page 180]
round [page 327]
sign [page 364]

3.2 acos

Returns the angle (in radians) of the specified cosine.

Syntax

acos (<cosine>)

Reference Manual: Building Blocks
60 PUBLIC Transact-SQL Functions

Parameters

<cosine>
is the cosine of the angle, expressed as a column name, variable, or constant of type
float, real,double precision, or any datatype that can be implicitly converted to
one of these types.
Examples
Example 1

Returns the angle where the cosine is 0.52:

select acos (0.52)

1.023945

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute acos.

Related Information

cos [page 117]
degrees [page 168]
radians [page 302]

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 61

3.3 allocinfo

Returns a list of allocation pages that are stored in an object allocation map (OAM) page.

Syntax
allocinfo(<db_id>, <page id>, "help" | "alloc pages on oam")
Parameters
<db_id>
is the database ID.
<page_id>
is the page ID.
help

shows available options.

alloc pages on oam
provides allocation page information.

Examples

Example

Provides a list of allocation pages that are stored in an object allocation map (OAM) page:

select allocinfo(1l,888,"alloc pages on oam")

00010000000003

Usage

Mechanism to retrieve all allocation pages for a particular partition or index. Returns NULL for an invalid page
when usingthe alloc pages on oamoption value.

Reference Manual: Building Blocks
62 PUBLIC Transact-SQL Functions

Permissions

You must have sa_role to execute this command.

Auditing

You can enable func_dbaccess auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationinextrainfo:

func_dbaccess 86 allocinfo ® Roles — Current active roles
e Keywords or options — ALLOCINFO
® Previous value — NULL
® Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.4 ascii

Returns the ASCII code for the first character in an expression.

Syntax

ascii(<char expr> | <uchar expr>)

Parameters

<char_expr>
is a character-type column name, variable, or constant expression of char, varchar,
nchar, of nvarchar type.

<uchar_expr>

is a character-type column name, variable, or constant expression of unichar or

univarchar type.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 63

Examples

Example 1

Returns the author's last names and the ACSII codes for the first letters in their last names, if the ASCII
code is less than 70:

select au lname, ascii(au lname) from authors
where ascii(au lname) < 70

au_lname

Bennet 66

Blotchet-Halls 66

Carson 67

DeFrance 68

Dull 68
Usage

When a string function accepts two character expressions but only one expression is unichar, the other
expression is “promoted” and internally converted to unichar. This follows existing rules for mixed-mode
expressions. However, this conversion may cause truncation, since unichar data sometimes takes twice the
space.

If <char expr >or <uchar expr >is NULL, returns NULL.

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute ascii.

Related Information

char [page 91]
to_unichar [page 418]

Reference Manual: Building Blocks
64 PUBLIC Transact-SQL Functions

3.5 asehosthame

Returns the physical or virtual host on which the SAP ASE server is running.

Syntax

asehostname

Examples

Example 1

Returns the SAP ASE server host name:

select asehostname ()

Standards

———————————————————— linuxkernel.sybase.com

SQL/92 and SQL/99 compliant

Permissions

The permission checks for asehostname differ based on your granular permissions settings.

Settings
Granular permissions

enabled

Granular permissions
disabled

Reference Manual: Building Blocks
Transact-SQL Functions

Description

With granular permissions enabled, you must be granted select on asehostname
or have manage server permission to execute asehostname.

With granular permissions disabled, you must be granted select on
asehostname or be a user with sa_role to execute asehostname.

PUBLIC 65

3.6 asin

Returns the angle (in radians) of the specified sine.

Syntax

asin (<sine>)

Parameters

<sine>

is the sine of the angle, expressed as a column name, variable, or constant of type
float, real, double precision, orany datatype that can be implicitly converted to
one of these types.

Examples

Example 1

Returns the angle of a sine of 0.52:

select asin(0.52)

0.546851

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
66 PUBLIC Transact-SQL Functions

Permissions

Any user can execute asin.

Related Information

degrees [page 168]
radians [page 302]
sin [page 368]

3.7 atan

Returns the angle (in radians) of a tangent with the specified value.

Syntax

atan (<tangent>)

Parameters

<tangent>

is the tangent of the angle, expressed as a column name, variable, or constant of type
float, real,double precision, orany datatype that can be implicitly converted to

one of these types.

Examples

Example 1

Returns the angle of a tangent of 0.50:

select atan(0.50)

0.463648

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 67

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute atan.

Related Information
atn2 [page 68]
degrees [page 168]

radians [page 302]
tan [page 412]

3.8 atn2

Returns the angle (in radians) of the specified sine and cosine.

Syntax

atn2 (<sine>, <cosine>)

Parameters

<sine>
is the sine of the angle, expressed as a column name, variable, or constant of type
float, real,double precision, or any datatype that can be implicitly converted to
one of these types.

Reference Manual: Building Blocks
68 PUBLIC Transact-SQL Functions

<cosine>

is the cosine of the angle, expressed as a column name, variable, or constant of type
float, real,double precision, orany datatype that can be implicitly converted to
one of these types.

Examples

Example 1

Returns the angle based on a sine of .50 and cosine of 48:

select atn2 (.50, .48)

0.805803

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute atn2.

Related Information

atan [page 67]
degrees [page 168]
radians [page 302]
tan [page 412]

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 69

39 avg

Calculates the numeric average of all (distinct) values.

Syntax
avg ([all | distinct] <expression>)

Parameters

all
applies avg to all values. a11 is the default.

distinct
eliminates duplicate values before avg is applied. distinct is optional.

<expression>
is a column name, constant, function, any combination of column names, constants,
and functions connected by arithmetic or bitwise operators, or a subquery. With
aggregates, an expression is usually a column name.

Examples

Example 1

70

Calculates the average advance and the sum of total sales for all business books. Each of these aggregate
functions produces a single summary value for all of the retrieved rows:

select avg(advance), sum(total sales)
from titles
where type = "business"

Example 2

Used with a group by clause, the aggregate functions produce single values for each group, rather than
for the entire table. This statement produces summary values for each type of book:

select type, avg(advance), sum(total sales)
from titles

group by type

type

UNDECIDED NULL NULL

Reference Manual: Building Blocks
PUBLIC Transact-SQL Functions

business 6,281.25 30788

mod_cook 7,500.00 24278

popular comp 7,500.00 12875

psychology 4,255.00 9939

trad cook 6,333.33 19566
Example 3

Groups the titles table by publishers and includes only those groups of publishers who have paid more
than $25,000 in total advances and whose books average more than $15 in price:

select pub id, sum(advance), avg(price)

from titles

group by pub_ id

having sum(advance) > $25000 and avg(price) > $15

pub id
0877 41,000.00 15.41
1389 30,000.00 18.98
Usage

® avg, an aggregate function, finds the average of the values in a column. avg can only be used on numeric
(integer, floating point, or money) datatypes. Null values are ignored in calculating averages.

e \When you average (signed or unsigned) int, smallint, tinyint data, the SAP ASE server returns the
result as an int value. When you average (signed or unsigned) bigint data, the SAP ASE server returns
theresult as abigint value. To avoid overflow errors in DB-Library programs, declare variables used for
results appropriately.

® You cannot use avg with the binary datatypes.

e Since the average value is only defined on numeric datatypes, using avg Unicode expressions generates an
error.

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute avg.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 71

Related Information

Expressions [page 468]
max [page 256]
min [page 259]

3.10 audit_event_name

Returns a description of an audit event.

Syntax

audit event name (<event id>)

Parameters

<event_id>

is the number of an audit event.

Returns

audit event name returns Prepare Database Command whenyou include 157 as the <event id>

Examples

Example 1
Queries the audit trail for table creation events:

select * from audit data where audit event name (event) = "Create Table"
Example 2

Obtains current audit event values. See the Usage section below for a complete list of audit values and
their descriptions.

create table #tmp(event id int, description varchar (255))

Reference Manual: Building Blocks
72 PUBLIC Transact-SQL Functions

go

declare @a int
select @a=1

while
begin

end

(@a<120)

insert #tmp values
select @a=@a + 1

select * from #tmp

go

(Ga,

audit event name (@a))

Usage

1 Ad hoc Audit Record
2 Alter Database

104 Create Index
105 Drop Index

The following lists the ID and name of each of the audit events:

e 1 AdHoc Audit record
e 2 Alter Database
e 3 Alter table

e ABCPIn

e 5NULL

e 6 Bind Default

e 7 Bind Message

e 8BindRule

® O Create Database
e 10 Create Table

e 11 Create Procedure

e 12 Create Trigger
e 13 Create Rule

® 14 Create Default
e 15 Create Message
e 16 Create View

e 17 Access To Database
e 18 Delete Table

e 19 Delete View

e 20 Disk Init

e 21 Disk Refit

e 2?2 Disk Reinit

e 23 Disk Mirror

e 24 Disk Unmirror
e 25 Disk Remirror

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

73

74

26 Drop Database
27 Drop Table

28 Drop Procedure
29 Drop Trigger

30 Drop Rule

31 Drop Default

32 Drop Message
33 Drop View

34 Dump Database
35 Dump Transaction
36 Fatal Error

37 Nonfatal Error

38 Execution Of Stored Procedure
39 Execution Of Trigger

40 Grant Command
41 Insert Table

42 Insert View

43 Load Database
44 | oad Transaction
45 Login

46 Logout

47 Revoke Command
48 RPC In

49 RPC Out

50 Server Boot

51 Server Shutdown
52 NULL

53 NULL

54 NULL

55 Role Toggling

56 NULL

57 NULL

58 Truncation of Audit Table

59 NULL
60 NULL

61 Access To Audit Table

62 Select Table

63 Select View

64 Truncate Table
65 NULL

66 NULL

67 Unbind Default
68 Unbind Rule

69 Unbind Message
70 Update Table

PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

e 71 Update View

e 72 NULL

e 73 Auditing Enabled

e 74 Auditing Disabled

e 75NULL

e 76 SSO Changed Password

e Table Change

e Audit Option Change

e 79 NULL

® 80 Role Check Performed

e 81 DBCC Command

e 82 Config

e 33 Online Database

e 84 Setuser Command

e 35 User-defined Function Command
e 36 Built-in Function

e 87 Disk Release

e 88 Set SSA Command

e 89 Kill/Terminate Command
e 90 Connect Command

e Ol Reference

e 92 Command Text

e O3 JCS Install Command

e 94 JCS Remove Command

e 95 Unlock Admin Account

® 96 Quiesce Database Command
e 97 Create SQLJ Function

e 98 Drop SQLJ Function

e 99 SSL Administration

e 100 Disk Resize

e 101 Mount Database

e 102 Unmount Database

e 103 Create Login

e 104 Create Index

e 105 Drop Index

e 106 Encrypted Column Admin
e 107 Create Encryption Key

e 108 AEK As/Not Default

e 109 Drop Encryption Key

e 110 Deploy UDWS

e 111 Undeploy UDWS

e 112 Login Locked

e 113 Quiesce Hold Sybsecurity
e 114 Quiesce Release Sybsecurity
e 115 Password Administration

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 75

e 116 Create Manifest_file

e 117 Generate Keypair

e 118 AEK Modify Encryption
e 119 AEK Add Encryption

i Note

The SAP ASE server does not log events if audit event name returns NULL.

See also:

® select in Reference Manual: Commands

® sp audit in Reference Manual: Procedures

Standards

ANSI SQL - compliance level: Transact-SQL extension.

Permissions

Any user can execute audit event name.

3.11 authmech

Determines what authentication mechanism is used by a specified logged in server process ID.

Syntax

authmech ([<spid>])

Examples

Example 1

Returns the authentication mechanism for server process ID 42, whether KERBEROS, LDAP, or any other
mechanism:

select authmech (42)

Reference Manual: Building Blocks
76 PUBLIC Transact-SQL Functions

Example 2

Returns the authentication mechanism for the current login's server process ID:
select authmech ()
or

select authmech (0)
Example 3

Prints the authentication mechanism used for each login session:

select suid, authmech (spid)
from sysprocesses where suid!=0

Usage

e This function returns output of type varchar from one optional argument.

e |fthe value of the server process ID is O, the function returns the authentication method used by the server
process ID of the current client session.

e |fnoargument is specified, the output is the same as if the value of the server process ID is O.
e Possible return values include 1dap, ase, pam, and NULL.

Permissions

The permission checks for authmech differ based on your granular permissions settings.

Settings Description

Granular With granular permissions enabled, any user can execute authmech to query a current

permllsswns personal session. You must have select permission on authmech to query the details
n , :

enabled of another user’s session.

Granljllal.’ With granular permissions disabled, any user can execute authmech to query a current

permissions personal session. You must be a user with sso_role or have select permission on

disabled s

authmech to query the details of another user's session.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 77

Auditing

You can enable security auditing option to audit this function. Values in event and extrainfo columns
from the sysaudits table are:

Audit option Event = Command or access audited Informationinextrainfo:

security 36 authmech e Roles — Current active roles
e Keywords or options — AUTHMECH
® Previous value — NULL
® Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.12 biginttohex

Returns the platform-independent 8 byte hexadecimal equivalent of the specified integer.

Syntax

biginttohex (<integer expression>)

Parameters

<integer expression>

is the integer value to be converted to a hexadecimal string.

Examples

Example 1

Converts the big integer -9223372036854775808 to a hexadecimal string:
1> select biginttohex (-9223372036854775808)

2> go

Reference Manual: Building Blocks
78 PUBLIC Transact-SQL Functions

8000000000000000

Usage

® biginttohex, adatatype conversion function, returns the platform-independent hexadecimal equivalent
of an integer, without a “Ox" prefix.

e Usethe biginttohex function for platform-independent conversions of integers to hexadecimal strings.
biginttohex accepts any expression that evaluates to abigint. It always returns the same hexadecimal
equivalent for a given expression, regardless of the platform on which it is executed.

Permissions

Any user can execute biginttohex.

Related Information

convert [page 110]
hextobigint [page 199]
hextoint [page 200]
inttohex [page 215]

3.13 bintostr

Converts a sequence of hexadecimal digits to a string of its equivalent alphanumeric characters or varbinary
data.

Syntax

select bintostr (<sequence of hexadecimal digits>)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 79

Parameters

<sequence of hexadecimal digits>

is the sequence of valid hexadecimal digits, consisting of [0 — 9], [a— f]and [A - F], and
which is prefixed with “Ox”.

Examples

Example 1

Converts the hexadecimal sequence of “Ox723ad82fe” to an alphanumeric string of the same value:

1> select bintostr (0x723ad82fe)
2> go

0723ad82fe

In this example, the in-memory representation of the sequence of hexadecimal digits and its equivalent
alphanumeric character string are:

Hexadecimal digits (5 bytes)

0 7 2 3 a d 8 2 f e

Alphanumeric character string (9 bytes)

0 7 2 3 a d 8 2 f e

The function processes hexadecimal digits from right to left. In this example, the number of digits in the
input is odd. For this reason, the alphanumeric character sequence has a prefix of “0" and is reflected in
the output.

Example 2

Converts the hexadecimal digits of a local variable called <@bin data> to an alphanumeric string
equivalent to the value of “723ad82fe":

declare @bin data varchar (30)
select @bin data = 0x723ad82fe
select bintostr (@bin data)

go

0723ad82fe

Reference Manual: Building Blocks
80 PUBLIC Transact-SQL Functions

Usage

® Any invalid characters in the input results in null as the output.
® The input must be valid varbinary data.
e A NULL input results in NULL output.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute bintostr.

Related Information

strtobin [page 398]

3.14 cache_usage

Returns cache usage as a percentage of all objects in the cache to which the table belongs.

Syntax

cache usage (<table name>)

Parameters

<table name>

is the name of a table. The name can be fully qualified (that is, it can include the
database and owner name).

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 81

Examples

Example 1

Returns percentage of the cache used by the titles tables:

select cache usage("titles")

98.876953
Example 2

Returns, from the master database, the percentage of the cache used by the authors tables

select cache usage ("pubs2..authors")

98.876953

Usage

® cache usage does not provide any information on how much cache the current object is using, and does
not provide information for cache usages of indexes if they are bound to different cache.

® (Incluster environments) cache usage provides cache usage of the cache the object is bound to in
current node.

Permissions

Any user can execute cache usage.

Reference Manual: Building Blocks
82 PUBLIC Transact-SQL Functions

3.15 case

case expression simplifies standard SQL expressions by allowing you to express a search condition using a
when. . .then construct instead of an i f statement. It supports conditional SQL expressions; can be used
anywhere a value expression can be used.

Syntax

case and <expression> syntax:

case
when <search condition> then <expression >
[when <search condition> then <expression>]...
[else <expression>]

end

case and <value> syntax:

case <value>
when <value> then <expression >
[when <value> then <expression>]...
[else <expression>]

end

Parameters

case

begins the case expression.
when

precedes the search condition or the expression to be compared.
<search_condition>

is used to set conditions for the results that are selected. Search conditions for case
expressions are similar to the search conditions in a where clause. Search conditions
are detailed in the Transact-SQL User’s Guide.

then

precedes the expression that specifies a result value of case.

<expression>and <value>

is a column name, a constant, a function, a subquery, or any combination of column
names, constants, and functions connected by arithmetic or bitwise operators.

else
is optional. When not specified, else null isimplied.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

Examples

Example 1

Selects all the authors from the authors table and, for certain authors, specifies the city in which they live:

select au lname, postalcode,

case

when postalcode = "94705"
then "Berkeley Author"

when postalcode = "94609"
then "Oakland Author"

when postalcode = "94612"
then "Oakland Author"

when postalcode = "97330"
then "Corvallis Author"

end

from authors
Example 2

Returns the first occurrence of a non-NULL value in either the 1owgty or highgty column of the
discounts table:

select stor id, discount,
coalesce (lowqgty, highgty)
from discounts

You can also use the following format to produce the same result, since coalesce is an abbreviated form
of a caseexpression:

select stor id, discount,
case
when lowgty is not NULL then lowgty
else highgty
end
from discounts

Example 3

Selects the <titles>and <type> fromthe titles table. If the book type is UNDECIDED, nullif returns
aNULL value:

select title,
nullif (type, "UNDECIDED")
from titles

You can also use the following format to produce the same result, since nullif is an abbreviated form of a
caseexpression:

select title,
case
when type = "UNDECIDED" then NULL
else type
end
from titles

Reference Manual: Building Blocks
84 PUBLIC Transact-SQL Functions

Example 4

Produces an error message, because at least one expression must be something other than the null
keyword:

select price, coalesce (NULL, NULL, NULL)
from titles
All result expressions in a CASE expression must not be NULL.

Example 5

Produces an error message, because at least two expressions must follow coalesce:

select stor id, discount, coalesce (highqty) from discounts
A single coalesce element is illegal in a COALESCE expression.

Example 6

This case with <values> example updates salary information for employees:

update employees
set salary =
case dept
when 'Video' then salary * 1.1
when 'Music' then salary * 1.2
else O
end

Example 7

Inthemovie titlestable, themovie type columnisencoded with an integer rather than the cha (10)
needed to spell out “Horror” “Comedy,” “Romance,” and “Western.” However, a text string is returned to
applications through the use of case expression:

"o "o

select title,
case movie type
when 1 then 'Horror'
when 2 then 'Comedy'
when 3 then 'Romance'
when 4 then 'Western'
else null
end,
our cost
from movie titles

Usage

® Use case with <value>when comparing values, where <value> is the value desired. If <value> equals
<expression>, then the value of the case is <result>. If <valuel> does not equal <expression>,
<value>is compared to <value2>. If <value> equals <value2>, then the value of the CASE is
<result2>.Ifnoneofthe <valuel ... valuen> are equalto the desired value, then the value of the
CASE is <resultx>. All of the <resulti> can be either a value expression or the keyword NULL. All of the
<valuei> must be comparable types, and all of the results must have comparable datatypes.

e |f your query produces a variety of datatypes, the datatype of a case expression result is determined by
datatype hierarchy. If you specify two datatypes that the SAP ASE server cannot implicitly convert (for
example, char and int), the query fails.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 85

Seealsoif...else, select, where clause in Reference Manual: Commands.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute case.

Related Information

Expressions [page 468]

Datatypes of Mixed-Mode Expressions [page 48]
coalesce [page 97]

nullif [page 267]

3.16 cast

Converts the specified value to another datatype.

Syntax

cast (<expression> as <datatype> [(<length> | <precision>[, <scale>])])

Parameters

<expression>

is the value to be converted from one datatype or date format to another. It includes
columns, constants, functions, any combination of constants, and functions that are
connected by arithmetic or bitwise operators orsubqueries.

When Java is enabled in the database, <expression> can be a value to be converted
to a Java-SQL class.

Reference Manual: Building Blocks
86 PUBLIC Transact-SQL Functions

<length>

<precision>

<scale>

Examples

Example 1

Converts the

select ca

go
J
(1 row af
Example 2

Converts the

select ti

Standards

When unichar is used as the destination datatype, the default length of 30 Unicode
values is used if no length is specified.

is an optional parameter used with char, nchar, unichar, univarchar, varchar
nvarchar, binary and varbinary datatypes. If you do not supply a length, the SAP
ASE server truncates the data to 30 characters for character types and 30 bytes for
binary types. The maximum allowable length for character and binary expression is
64K.

is the number of significant digits in a numeric or decimal datatype. For float datatypes,

precision is the number of significant binary digits in the mantissa. If you do not supply
a precision, the SAP ASE server uses the default precision of 18 for numeric and
decimal datatypes.

is the number of digits to the right of the decimal point in a numeric, or decimal
datatype. If you do not supply a scale, the SAP ASE server uses the default scale of O.

date into a more readable datetime format:

st ("01/03/63" as datetime)

an 3 1963 12:00AM
fected)

total sales column in the title database to a 12-character column:

tle, cast(total sales as char(12))

ANSI SQL - Compliance level: ANSI compliant.

Permissions

Any user can execute cast.

Reference Manual: Building Blocks

Transact-SQL Functions

PUBLIC

87

3.16.1 Usage for cast

There are additional considerations for using cast.

® cast uses the default format for date and time datatypes.

® cast generates a domain error when the argument falls outside the range over which the function is
defined. This should happen rarely.

® Youcannotusenull/not null keywords to specify the resulting datatype's nullability. You can, however,
use cast with the null value itself to achieve a nullable result datatype. To convert a value to a nullable
datatype, you the convert function, which does allow the use of nul1/not null keywords.

® Youcanuse cast to convertan image columntobinary or varbinary. You are limited to the maximum
length of the binary datatypes that is determined by the maximum column size for your server's logical
page size. If you do not specify the length, the converted value has a default length of 30 characters.

® Youcanuse unichar expressions as a destination datatype, or they can be converted to another datatype.
unichar expressions can be converted either explicitly between any other datatype supported by the
server, or implicitly.

e |f you do not specify length when unichar is used as a destination type, the default length of 30 Unicode
values is used. If the length of the destination type is not large enough to accommodate the given
expression, an error message appears.

3.16.1.1 Conversions Involving Java Classes

When Java is enabled in the database, you can use cast to change datatypes in a number of ways.

e Convert Java object types to SQL datatypes.
e Convert SQL datatypes to Java types.

e Convert any Java-SQL class installed in the SAP ASE server to any other Java-SQL class installed in the
SAP ASE server if the compile-time datatype of the expression (the source class) is a subclass or
superclass of the target class.

The result of the conversion is associated with the current database.

3.16.1.2 Implicit Conversion

Implicit conversion between types when the primary fields do not match may cause data truncation, the
insertion of a default value, or an error message to be raised.

For example, when a datetime value is converted to a date value, the time portion is truncated, leaving only the
date portion. If a time value is converted to a datetime value, a default date portion of Jan 1, 1900 is added to
the new datetime value. If a date value is converted to a datetime value, a default time portion of 00:00:00:000
is added to the datetime value.

Reference Manual: Building Blocks
88 PUBLIC Transact-SQL Functions

Example: Example of Implicit Conversion

DATE -> VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME
TIME -> VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME
VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME -> DATE
VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME -> TIME

3.16.1.3 Explicit Conversion

If you attempt to explicitly convert a date to a datetime, and the value is outside the datetime range such as
“Jan 1, 1000" the conversion is not allowed and an informative error message is raised.

Example: Example of Explicit Conversion

DATE -> UNICHAR, UNIVARCHAR
TIME -> UNICHAR, UNIVARCHAR
UNICHAR, UNIVARCHAR -> DATE
UNICHAR, UNIVARCHAR -> TIME

3.17 ceiling

Returns the smallest integer greater than or equal to the specified value.

Syntax

ceiling (<value>)

Parameters

<value>

is a column, variable, or expression with a datatype is exact numeric, approximate
numeric, money, or any type that can be implicitly converted to one of these types.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 89

Examples

Example 1

Returns a value of 124:
select ceiling(123.45)
124

Example 2

Returns a value of -123:
select ceiling (-123.45)
=123

Example 3
Returns a value of 24.000000:

select ceiling (1.2345E2)
24.000000

Example 4
Returns a value of -123.000000:

select ceiling (-1.2345E2)
-123.000000

Example 5

Returns a value of 124.00
select ceiling($123.45)
124.00

Example 6

Returns values of “discount” from the salesdetail table where title idis the value “PS3333™:

select discount, ceiling(discount) from salesdetail where title id = "PS3333"
discount

45.000000 45.000000

46.700000 47.000000

46.700000 47.000000

50.000000 50.000000

Reference Manual: Building Blocks
90 PUBLIC Transact-SQL Functions

Usage
ceiling, a mathematical function, returns the smallest integer that is greater than or equal to the specified
value. The return value has the same datatype as the value supplied.

For numeric and decimal values, results have the same precision as the value supplied and a scale of zero.

See also:

® set in Reference Manual: Commands.
e Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute ceiling.

Related Information

abs [page 59]
floor [page 180]
round [page 327]
sign [page 364]

3.18 char

Converts a single-byte integer value to a character value (char is usually used as the inverse of ascii),
returning the character equivalent of an integer.

Syntax

char (<integer expr>)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 91

Parameters

<integer_expr>
isany integer (tinyint, smallint, or int) column name, variable, or constant
expression between 0 and 255.

Examples

Example 1

select char (42)

Example 2

select xxx = char (65)

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute char.

3.18.1 Usage for char

There are additional considerations for using char.

® char returns a char datatype. If the resulting value is the first byte of a multibyte character, the character
may be undefined.
® |[f<char expr>is NULL, returns NULL.

See also Transact-SQL Users Guide.

Reference Manual: Building Blocks
92 PUBLIC Transact-SQL Functions

Related Information

ascii [page 63]
str [page 393]

3.18.1.1 Reformatting Output With char

You can use concatenation and char values to add tabs or carriage returns to reformat output. char (10)
converts to areturn; char (9) converts to a tab.

For example:

/* just a space */

select title id + " " + title from titles where title id = "T67061"

/* a return */

select title id + char(10) + title from titles where title id = "T67061"
/* a tab */

select title id + char(9) + title from titles where title id = "T67061"

T67061
Programming with Curses

T67061 Programming with Curses

3.19 char_length

Returns the number of characters in an expression.

Syntax

char length (<char expr> | <uchar expr>)

Parameters

<char_expr>

is a character-type column name, variable, or constant expression of char, varchar,

nchar, text locator,unitext locator, Of nvarchar type

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 93

<uchar_expr>

is a character-type column name, variable, or constant expression of unichar or

univarchar type.

Examples

Example 1

Returns a number of characters from titles where the ID is PC9999:

select char length (notes) from titles
where title id = "PC9999"

Example 2

Returns the number of characters from three variables:

declare @varl varchar (20), @var2 varchar (20), @char char (20)
select @varl = "abcd", @var2 = "abcd ", @Qchar = "abcd"
select char length(@varl), char length(@var2), char length (Qchar)

Usage

For:

e Compressed large object (LOB) columns, char length returns the number of original plain text
characters.

e \Variable-length columns and variables, char length returns the number of characters (not the defined
length of the column or variable). If explicit trailing blanks are included in variable-length variables, they are
not stripped. For literals and fixed-length character columns and variables, char length does not strip
the expression of trailing blanks (see Example 2).

® unitext,unichar, andunivarchar columns, char length returns the number of Unicode values (16-
bit), with one surrogate pair counted as two Unicode values. For example, this is what is returned if a
unitext column ut contains row value U+0041U+0042U+d800dc00:

select char length(ut) from unitable

e Multibyte character sets, the number of characters in the expression is usually fewer than the number of
bytes; use datalength to determine the number of bytes.

e Unicode expressions, returns the number of Unicode values (not bytes) in an expression. Surrogate pairs
count as two Unicode values.

Reference Manual: Building Blocks
94 PUBLIC Transact-SQL Functions

If <char expr >or <uchar expr >isNULL, char length returns NULL.

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute char_length.

Related Information

datalength [page 137]

3.20 charindex

Returns an integer representing the starting position of an expression.

Syntax

charindex (<expressionl>, <expression2> [, <start>])

Parameters

<expression>
is a binary or character column name, variable, or constant expression. Can be char,
varchar, nchar, nvarchar, unichar, univarchar,binary, text locator
unitext locator,image locator Orvarbinary.

<start>

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

95

when specified, causes the search for <expressionl> to start at the given offset in
<expression2>. When <start>is not given, the search start at the beginning of
<expression2>.<start>can be an expression, but must return an integer value.

Examples

Example 1

Returns the position at which the character expression “wonderful” begins in the notes column of the
titles table:

select charindex ("wonderful", notes)
from titles
where title id = "TC3218"

Example 2

This query executes successfully, returning zero rows. The column spt_values.name is defined as

varchar (35):

select <name>
from spt values
where charindex('NO', name, 1000) > O

In comparison, this query does not use <start>, returning the position at which the character expression
“wonderful” begins in the notes column of the titles table:

select charindex ("wonderful", notes)
from titles
where title id = "TC3218"

Usage

96

charindex, a string function, searches <expression2> for the first occurrence of <expressionl>and
returns an integer representing its starting position. If <expression1>is not found, charindex returns O.
If <expressionl> contains wildcard characters, charindex treats them as literals.

If <expression2 >is NULL, returns O.

If a varchar expression is given as one parameter and a unichar expression as the other, the varchar
expression is implicitly converted to unichar (with possible truncation).

If only one of <expressionl>or <expression2>is alocator, the datatype of the other expression must
be implicitly convertible to the datatype of the LOB referenced by the locator.

Reference Manual: Building Blocks
PUBLIC Transact-SQL Functions

® \When <expressionl>is alocator, the maximum length of the LOB referenced by the locator is 16KB.

e The<start>valueis interpreted as the number of characters to skip before starting the search for
varchar, univarchar, text locator,andunitext locator datatypes, and as the number of bytes
for binary and image locator datatypes.

e The maximum length of <expressionl>is 16,384 bytes.

e |[favarchar expression is given as one parameter and a unichar expression as the other, the varchar
expression is implicitly converted to unichar (with possible truncation).

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute charindex.

Related Information

patindex [page 293]

3.21 coalesce

Supports conditional SQL expressions; can be used anywhere a value expression can be used; alternative for a
case expression. coalesce expression simplifies standard SQL expressions by allowing you to express a
search condition as a simple comparison instead of using a when. . . then construct.

Syntax

coalesce (<expression>, <expression >[, <expression>]...)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 97

Parameters

coalesce
evaluates the listed expressions and returns the first non-null value. If all expressions
are null, coalesce returns NULL.

<expression>
is a column name, a constant, a function, a subquery, or any combination of column
names, constants, and functions connected by arithmetic or bitwise operators.

Examples

Example 1

Returns the first occurrence of a non-null value in either the lowgty or highgty column of the discounts
table:

select stor id, discount,
coalesce (lowqgty, highgty)
from discounts

Example 2

An alternative way of writing the previous example:

select stor id, discount,
case
when lowgty is not NULL then lowgty
else highgty
end
from discounts

Usage

98

You can use coalesce expressions anywhere an expression in SQL.
At least one result of the coalesce expression must return a non-null value. This example produces the
following error message:

select price, coalesce (NULL, NULL, NULL)
from titles

All result expressions in a CASE expression must not be NULL.

If your query produces a variety of datatypes, the datatype of a case expression result is determined by
datatype hierarchy. If you specify two datatypes that the SAP ASE server cannot implicitly convert (for
example, char and int), the query fails.

coalesce is an abbreviated form of a case expression. Example 2 describes an alternative way of writing
the coalesce statement.

Reference Manual: Building Blocks
PUBLIC Transact-SQL Functions

® coalesce must be followed by at least two expressions. This example produces the following error

message:

select stor id, discount, coalesce (highqgty)

from discounts

A single coalesce element is illegal in a COALESCE expression.

See also case, nullif, select,if...else, where clause in Reference Manual: Commands

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute coalesce.

Related Information

Expressions [page 468]
Datatypes of Mixed-Mode Expressions [page 48]

3.22 col_length

Returns the defined length of a column.

Syntax

col length(<object name>, <column name>)

Parameters

<object_name>

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

99

is name of a database object, such as a table, view, procedure, trigger, default, or rule.
The name can be fully qualified (that is, it can include the database and owner name). It
must be enclosed in quotes.

<column_name>

is the name of the column.

Examples

Example 1

Finds the length of the title columninthe titles table. The “x" gives a column heading to the result:

select x = col length("titles", "title")

80

Usage

To find the actual length of the data stored in each row, use datalength.

For:

® text,unitext,and image columns — col length returns 16, the length of the binary (16) pointer to
the actual text page.

® unichar columns - the defined length is the number of Unicode values declared when the column was
defined (not the number of bytes represented).

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute col length.

Reference Manual: Building Blocks
100 PUBLIC Transact-SQL Functions

Auditing

You can enable func_obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func obj access 86 col length ® Roles — Current active roles
® Keywords or options — COL_LENGTH
® Previous value — NULL
e Current value - NULL
e QOther information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Related Information

datalength [page 137]

3.23 col_name

Returns the name of the column where the table and column IDs are specified, and can be up to 255 bytes in
length.

Syntax

col name (<object id>,< column id> [, <database id>])

Parameters

<object_id>
is a numeric expression that is an object ID for a table, view, or other database object.
These are stored inthe id column of sysobjects.

<column_id>

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 101

is a numeric expression that is a column ID of a column. These are stored inthe colid

column of syscolumns.

<database_ id>

is a numeric expression that is the ID for a database. These are stored inthe db_id

column of sysdatabases.

Examples

Example 1

Returns the name of the column for table 208003772 and column ID 2:

select col name (208003772, 2)

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute col name.

102 PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

Auditing

You can enable func _obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event = Command or access audited Informationinextrainfo:

func_obj access 86 col name ® Roles — Current active roles
® Keywords or options — COL_NAME
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Related Information

db_id [page 156]
object_id [page 273]

3.24 compare

Allows you to directly compare two character strings based on alternate collation rules.

Syntax

compare ({<char_expressionl> | <uchar_expressionl> },
{<char expression2>|<uchar expression2>}),
[{<collation name> | <collation ID>}]

Parameters

<char_expressionl>0Or <uchar_expressionl>

are the character expressions to compare to <char expression2>or

<uchar expression 2>.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 103

<char_expression2>0r<uchar_expression2>

are the character expressions against which to compare <char expressionl>or

<uchar expressionl>.
<char expressionl> and <char expression2>can be:

® (Charactertype (char, varchar, nchar, or nvarchar)
e Character variable, or
e Constant character expression, enclosed in single or double quotation marks

<uchar expressionl>and <uchar expression2>can be:

e Character type (unichar or univarchar)
e Character variable, or
e Constant character expression, enclosed in single or double quotation marks

<collation_name>Or<collation_ID>

<collation_ name> can be a quoted string or a character variable that specifies the
collation to use, while <collation ID> isaninteger constant or a variable that
specifies the collation to use. The valid values are:

Description Collation name Collation ID
Default Unicode multilingual default 20
Thai dictionary order thaidict 21
ISO14651 standard is014651 22
UTF-16 ordering — matches UTF-8 binary ordering utf8bin 24
CP 850 Alternative — no accent altnoacc 39
CP 850 Alternative — lowercase first altdict 45
CP 850 Western European — no case preference altnocsp 46
CP 850 Scandinavian — dictionary ordering scandict 47
CP 850 Scandinavian — case-insensitive with preference scannocp 48
GB Pinyin gbpinyin n/a
Binary sort binary 50
Latin-1 English, French, German dictionary dict 51
Latin-1 English, French, German no case nocase 52
Latin-1 English, French, German no case, preference nocasep 53
Latin-1 English, French, German no accent noaccent 54

Reference Manual: Building Blocks
104 PUBLIC Transact-SQL Functions

Description Collation name Collation ID

Latin-1 Spanish dictionary espdict 55
Latin-1 Spanish no case espnocs 56
Latin-1 Spanish no accent espnoac 57
ISO 8859-5 Russian dictionary rusdict 58
ISO 8859-5 Russian no case rusnocs 59
ISO 8859-5 Cyrillic dictionary cyrdict 63
ISO 8859-5 Cyrillic no case cyrnocs 64
ISO 8859-7 Greek dictionary elldict 65
ISO 8859-2 Hungarian dictionary hundict 69
ISO 8859-2 Hungarian no accents hunnoac 70
ISO 8859-2 Hungarian no case hunnocs 71
ISO 8859-9 Turkish dictionary turdict 72
ISO 8859-9 Turkish no accents turknoac 73
ISO 8859-9 Turkish no case turknocs 74
Binary sort order that matches the Business Suite (and binaryalt 99
ABAP) binary sort order

CP932 binary ordering cp932bin 129
Chinese phonetic ordering dynix 130
GB2312 binary ordering gh2312bn 137
Common Cyrillic dictionary cyrdict 140
Turkish dictionary turdict 155
EUCKSC binary ordering euckscbn 161
Chinese phonetic ordering gbpinyin 163
Russian dictionary ordering rusdict 165
SJIS binary ordering sjisbin 179
EUCJIS binary ordering eucjisbn 192

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 105

Description Collation name Collation ID

BIG5 binary ordering bighbin 194

Shift-JIS binary order sjisbin 259

Examples

Example 1

Compares aaa and bbb:

1> select compare ("aaa","bbb")
2> go

-1
(1 row affected)

Alternatively, you can also compare aaa and bbb using this format:

1> select compare (("aaa"), ("bbb"))
2> go

(1 row affected)
Example 2

Compares aaa and bbb and specifies binary sort order:

1> select compare ("aaa","bbb","binary")
2> go

(1 row affected)

Alternatively, you can compare aaa and bbb using this format, and the collation ID instead of the collation
name:

1> select compare (("aaa"), ("bbb"), (50))
2> go

=1
(1 row affected)

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
106 PUBLIC Transact-SQL Functions

Permissions

Any user can execute compare.

3.24.1 Usage for comparec

There are additional considerations for using compare.

® The compare function returns the following values, based on the collation rules that you chose:
o 1-indicates that <char expressionl>or <uchar expressionl> is greater than
<char expression2>0r< uchar expression2>.
o O -indicates that <char expressionl>or <uchar expressionl>isequalto
<char expression2>0r< uchar expression2>.
o -l-indicates that <char expressionl>or<uchar expressionl>islessthan
<char expression2 >0r< uchar expression2>.
® <Jchar expressionl>, <uchar expressionl>, and <char expression2>,< uchar expression2
>must be characters that are encoded in the server's default character set.
® <Jchar expressionl>, <uchar expression 1>, 0r<char expression2>, <uchar expression2>,
or both, can be empty strings:
o If<char expression2>or<uchar expression2>isempty, the functionreturns 1.
o If both strings are empty, then they are equal, and the function returns O.
o If<char expressionl>or<uchar expression 1>isempty,the functionreturns -1.
The compare function does not equate empty strings and strings containing only spaces. compare uses
the sortkey function to generate collation keys for comparison. Therefore, a truly empty string, a string
with one space, or a string with two spaces do not compare equally.
e [feither <char expressionl>, <uchar expressionl>;0r <char expression2>,
<uchar expression2 >is NULL, thenthe resultis NULL.
e |[favarchar expression is given as one parameter and a unichar expression is given as the other, the
varchar expression is implicitly converted to unichar (with possible truncation).

e |fyou do not specify avalue for <collation name>or<collation ID>, compare assumes binary
collation.

Table 10: Valid Values for collation_name and collation_ID

Description Collation Name Collation ID
Default Unicode multilingual default 20
Thai dictionary order thaidict 21
ISO14651 standard is014651 22
UTF-16 ordering — matches UTF-8 binary ordering utf8bin 24
CP 850 Alternative — no accent altnoacc 39

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 107

Description Collation Name Collation ID
CP 850 Alternative — lowercase first altdict 45
CP 850 Western European — no case preference altnocsp 46
CP 850 Scandinavian - dictionary ordering scandict 47
CP 850 Scandinavian — case-insensitive with preference scannocp 48
GB Pinyin gbpinyin n/a
Binary sort binary 50
Latin-1 English, French, German dictionary dict 51
Latin-1 English, French, German no case nocase 52
Latin-1 English, French, German no case, preference nocasep 53
Latin-1 English, French, German no accent noaccent 54
Latin-1 Spanish dictionary espdict 55
Latin-1 Spanish no case espnocs 56
Latin-1 Spanish no accent espnoac 57
ISO 8859-5 Russian dictionary rusdict 58
ISO 8859-5 Russian no case rusnocs 59
ISO 8859-5 Cyrillic dictionary cyrdict 63
ISO 8859-5 Cyrillic no case cyrnocs 64
ISO 8859-7 Greek dictionary elldict 65
ISO 8859-2 Hungarian dictionary hundict 69
ISO 8859-2 Hungarian no accents hunnoac 70
ISO 8859-2 Hungarian no case hunnocs 71
ISO 8859-9 Turkish dictionary turdict 72
ISO 8859-9 Turkish no accents turknoac 73
ISO 8859-9 Turkish no case turknocs 74
Binary sort order that matches the Business Suite (and ABAP) binary sort binaryalt 99

order

108 PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

Description Collation Name Collation ID
CP932 binary ordering cp932bin 129
Chinese phonetic ordering dynix 130
GB2312 binary ordering gb2312bn 137
Common Cyrillic dictionary cyrdict 140
Turkish dictionary turdict 155
EUCKSC binary ordering euckscbn 161
Chinese phonetic ordering gbpinyin 163
Russian dictionary ordering rusdict 165
SJIS binary ordering sjisbin 179
EUCJIS binary ordering eucjisbn 192
BIG5 binary ordering bigbbin 194
Shift-JIS binary order sjisbin 259

Related Information

sortkey [page 369]

3.24.1.1 Maximum Row and Column Length for APL and DOL

compare can generate up to six bytes of collation information for each input character. Therefore, the result
from using compare may exceed the length limit of the varbinary datatype. If this happens, the result is

truncated to fit.

The SAP ASE server issues a warning message, but the query or transaction that contained the compare

function continues to run. Since this limit is dependent on the logical page size of your server, truncation
removes result bytes for each input character until the result string is less than the following for DOL and APL

tables:

Table 11: APL Tables
Page Size

Maximum Row Length

Maximum Column Length

2K (2048 bytes)

1962

1960 bytes

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

109

Page Size Maximum Row Length Maximum Column Length

4K (4096 bytes) 4010 4008 bytes
8K (8192 bytes) 8106 8104 bytes
16K (16384 bytes) 16298 16296 bytes

Table 12: DOL Tables

Page Size Maximum Row Length Maximum Column Length

2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes

8K (8192 bytes) 8108 8102 bytes

16K (16384 bytes) 16300 16294 bytes if table does not include

any variable length columns

16K (16384 bytes) 16300 (subject to a max start offset of ~ 8191-6-2 = 8183 bytes if table includes
varlen = 8191) at least on variable length column.This
size includes six bytes for the row over-
head and two bytes for the row length
field

3.25 convert

Converts the specified value to another datatype or a different datetime display format.

Syntax

convert (<datatype> [(<length>) | (<precision>[, <scale>])]
[null | not null], <expression >[, <style>])

Parameters

<datatype>
is the system-supplied datatype (for example, char (10),unichar (10),varbinary
(50), or int) into which to convert the expression. You cannot use user-defined
datatypes.

Reference Manual: Building Blocks
110 PUBLIC Transact-SQL Functions

<length>

<precision>

<scale>

null | not null

<expression>

<style>

When Java is enabled in the database, <datatype> can also be a Java-SQL class in the
current database.

is an optional parameter used with char, nchar, unichar, univarchar, varchar
nvarchar, binary, and varbinary datatypes. If you do not supply a length, the SAP
ASE server truncates the data to 30 characters for the character types and 30 bytes for
the binary types. The maximum allowable length for character and binary expression is
64K.

is the number of significant digits in @a numeric or decimal datatype. For f1loat
datatypes, precision is the number of significant binary digits in the mantissa. If you do
not supply a precision, the SAP ASE server uses the default precision of 18 for numeric
and decimal datatypes.

is the number of digits to the right of the decimal point in a numeric, or decimal
datatype. If you do not supply a scale, the SAP ASE server uses the default scale of O.

specifies the nullabilty of the result expression. If you do not supply either null or not
null, the converted result has the same nullability as the expression.

is the value to be converted from one datatype or date format to another.

When Java is enabled in the database, <expression> can be a value to be converted
to a Java-SQL class.

When unichar is used as the destination datatype, the default length of 30 Unicode
values is used if no length is specified.

is the display format to use for the converted data. When converting money or
smallmoney datato a character type, use a <style> of 1to display a comma after
every 3 digits.

When converting datetime or smalldatetime datato a character type, use the style
numbers in the following table to specify the display format. Values in the left-most
column display 2-digit years (<yy>). For 4-digit years (<yyyy>), add 100, or use the
value in the middle column.

When converting date data to a character type, use style numbers 1 through 7 (101
through 107) or 10 through 12 (110 through 112) in the following table to specify the
display format. The default value is 100 (mon dd yyyy hh:miAM (or PM)). If date data
is converted to a style that contains a time portion, that time portion reflects the default
value of zero.

When converting time data to a character type, use style number 8 or 9 (108 or 109) to
specify the display format. The default is 100 (mon dd yyyy hh:miAM (or PM)). If time
datais converted to a style that contains a date portion, the default date of Jan 1, 1900
is displayed.

Reference Manual: Building Blocks

Transact-SQL Functions

PUBLIC

111

112

PUBLIC

Table 13: Date Format Conversions Using the style Parameter

Without

Century With Century

(yy) (yyyy) Standard Output

- Oor100 Default <mon dd yyyy hh:mm>AM (or PM)

1 101 USA <mm/dd/yy>

2 2 SQL standard <yy.mm.dd>

3 103 English/French <dd/mm/yy>

4 104 German <dd.mm.yy>

5 105 <dd-mm-yy>

6 106 <dd mon yy>

7 107 <mon dd, yy>

8 108 <HH:mm:ss>

- 9or 109 Default + millisec- <mon dd yyyy hh:mm:ss>AM (or
onds PM)

10 110 USA <mm-dd-yy>

11 111 Japan <yy/mm/dd>

12 112 ISO <yymmdd>

13 113 <yy/dd/mm>

14 114 <mm/yy/dd>

14 114 <hh:mi :ss:mmm>AM(or PM)

15 115 <dd/yy/mm>

- 16 or116 <mon dd yyyy HH:mm:ss>

17 117 <hh : mmAM>

18 118 <HH :mm>

19 <hh:mm:ss:zzzAM>

20 <hh:mm:ss:zzz>

21 <yy/mm/dd><HH:mm:ss>

22 <yy/mm/dd> <HH:mm> AM (or PM)

Reference Manual: Building Blocks
Transact-SQL Functions

Without
Century With Century

(yy) (yyyy) Standard Output

23 <yyyy-mm-ddTHH:mm: ss>
36 136 <hh:mm:ss.zzzzzz>AM(PM)
37 137 <hh:mm.ss.zzzzzz>

38 138 <mon dd yyyy

hh:mm:ss.zzzzzz>AM(PM)

39 139 <mon dd yyyy hh:mm:ss.zzzzzz>

40 140 <yyyy-mm-dd hh:mm:ss.zzzzzz>

“mon” indicates a month spelled out, “mm” the month number or minutes.

“HH "indicates a 24-hour clock value, “hh™ a 12-hour clock value. The last row, 23,
includes a literal “T" to separate the date and time portions of the format.Styles 24-35
are undefined.

The default values (<style> 0 or100), and <style> 9 or 109 return the century
(<yyyy>). When converting to char or varchar from smalldatetime, styles that
include seconds or milliseconds show zeros in those positions.

Examples

Example 1

Converts the specified value in title to another datatype display format:

select title, convert(char(1l2), total sales)
from titles

Example 2

Converts the title and total sales from title:

select title, total sales
from titles
where convert (char (20), total sales) like "1%"

Example 3

Converts the current date to style 3, dd/mm/yy:

select convert (char(12), getdate(), 3)
Example 4

If the value pubdate can be null, you must use varchar rather than char, or errors may result:

select convert (varchar(12), pubdate, 3) from titles

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 113

Example 5

Returns the integer equivalent of the string “0x00000100". Results can vary from one platform to another:

select convert (integer, 0x00000100)
Example 6

Returns the platform-specific bit pattern as an SAP binary type:

select convert (binary, 10)
Example 7

Returns 1, the bit string equivalent of $1.11:

select convert (bit, $1.11)
Example 8

Creates #tempsales with total sales of datatype char (100), and does not allow null values. Even if
titles.total sales was defined as allowing nulls, #tempsales is created with
#tempsales.total sales not allowing null values:

select title, convert (char(100) not null, total sales) into #tempsales
from titles

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute convert.

3.25.1 Usage for convert

There are additional considerations for using convert.

114

convert, a datatype conversion function, converts between a wide variety of datatypes and reformats
date/time and money data for display purposes.

If they are compressed, convert decompresses large object (LOB) columns before converting them to
other datatypes.

convert — returns the specified value, converted to another datatype or a different datetime display
format. When converting from unitext to other character and binary datatypes, the result is limited to the
maximum length of the destination datatype. If the length is not specified, the converted value has a
default size of 30 bytes. If you are using enabled enable surrogate processing, asurrogate pairis

Reference Manual: Building Blocks
PUBLIC Transact-SQL Functions

returned as a whole. For example, this is what is returned if you convert a unitext column that contains data
U+0041U+0042U+20acU+0043 (stands for “AB1") to a UTF-8 varchar (3) column:

select convert (varchar (3), ut) from untable

AB

® convert generates a domain error when the argument falls outside the range over which the function is
defined. This should happen rarely.

e Usenullornot null tospecify the nullability of a target column. Specifically, this can be used with
select into to create a new table and change the datatype and nullability of existing columns in the
source table (See Example 8, above).

The result is an undefined value if:

o The expression being converted isto anot null result.
o The expression’s value is null.
Use the following select statement to generate a known non-NULL value for predictable results:

select convert (int not null isnull(col2, 5)) from tablel

® You canuse convert to convert an image columntobinary or varbinary. You are limited to the
maximum length of the binary datatypes, which is determined by the maximum column size for your
server's logical page size. If you do not specify the length, the converted value has a default length of 30
characters.

® Youcanuse unichar expressions as a destination datatype or you can convert them to another datatype.
unichar expressions can be converted either explicitly between any other datatype supported by the
server, or implicitly.

e |f you do not specify the length when unichar is used as a destination type, the default length of 30
Unicode values is used. If the length of the destination type is not large enough to accommodate the given
expression, an error message appears.

See also Transact-SQL Users Guide; Java in Adaptive Server Enterprise for a list of allowed datatype mappings
and more information about datatype conversions involving Java classes.

Related Information

User-Defined Datatypes [page 56]
hextoint [page 200]
inttohex [page 215]

3.25.1.1 Conversions Involving Java classes

When Java is enabled in the database, you can use convert to change datatypes in a number of ways.

e Convert Java object types to SQL datatypes.
e Convert SQL datatypes to Java types.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 115

e Convert any Java-SQL class installed in the SAP ASE server to any other Java-SQL class installed in the
SAP ASE server if the compile-time datatype of the expression (the source class) is a subclass or
superclass of the target class.

The result of the conversion is associated with the current database.

3.25.1.2 Implicit Conversion

Implicit conversion between types when the primary fields do not match may cause data truncation, the
insertion of a default value, or an error message to be raised.

For example, when a datetime value is converted to a date value, the time portion is truncated, leaving only the
date portion. If a time value is converted to a datetime value, a default date portion of Jan 1, 1900 is added to
the new datetime value. If a date value is converted to a datetime value, a default time portion of 00:00:00:000
is added to the datetime value.

Example: Example of Implicit Conversion

DATE -> VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME
TIME -> VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME
VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME -> DATE
VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME -> TIME

3.25.1.3 Explicit Conversion

If you attempt to explicitly convert a date to a datetime and the value is outside the datetime range, such as
“Jan 1, 1000" the conversion is not allowed and an informative error message is raised.

An example of explicit conversion:

DATE -> UNICHAR, UNIVARCHAR
TIME -> UNICHAR, UNIVARCHAR
UNICHAR, UNIVARCHAR -> DATE
UNICHAR, UNIVARCHAR -> TIME

Reference Manual: Building Blocks
116 PUBLIC Transact-SQL Functions

3.26 cos

Returns the cosine of the angle specified in radians.

Syntax

cos (<angle>)

Parameters

<angle>

is any approximate numeric (float, real, or double precision)columnname,
variable, or constant expression.

Examples

Example 1

Returns the cosine of 44:

select cos (44)

0.999843

Usage

cos, a mathematical function, returns the cosine of the specified angle, in radians.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 117

Permissions

Any user can execute cos.

3.27 cot

Returns the cotangent of the angle specified in radians.

Syntax

cot (<angle>)

Parameters

<angle>

is any approximate numeric (float, real, or double precision)columnname,
variable, or constant expression.

Examples

Example 1

Returns the cotangent of 90:

select cot (90)

-0.501203

Usage

cot, a mathematical function, returns the cotangent of the specified angle, in radians.

See also Transact-SQL Users Guide.

Reference Manual: Building Blocks
118 PUBLIC Transact-SQL Functions

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute cot.

Related Information

degrees [page 168]
radians [page 302]
sin [page 368]

3.28 count

Returns the number of (distinct) non-null values, or the number of selected rows as an integer.

Syntax

count ([all | distinct] <expression>)

Parameters

all

applies count to all values. al1l is the default.
distinct

eliminates duplicate values before count is applied. distinct is optional.
<expression>

is a column name, constant, function, any combination of column names, constants,
and functions connected by arithmetic or bitwise operators, or a subquery. With
aggregates, an expression is usually a column name.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

119

Examples

Example 1

Finds the number of different cities in which authors live:

select count (distinct city)
from authors

Example 2

Lists the types in the titles table, but eliminates the types that include only one book or none:

select type
from titles

group by type
having count (*) > 1

Usage

e Whendistinct is specified, count finds the number of unique non-null values. count can be used with
all datatypes, including unichar, but cannot be used with text and image. Null values are ignored when
counting.

® count (<column name>) returns avalue of O on empty tables, on columns that contain only null values,
and on groups that contain only null values.

® count (*) finds the number of rows. count (*) does not take any arguments, and cannot be used with
distinct. All rows are counted, regardless of the presence of null values.

e \When tables are being joined, include count (*) in the select list to produce the count of the number of
rows in the joined results. If the objective is to count the number of rows from one table that match criteria,

use count (<column name>).

® You can use count as an existence check in a subquery. For example:

select * from tab where 0 <
(select count (*) from tab2 where ...)

However, because count counts all matching values, exists or in may return results faster. For example:

select * from tab where exists
(select * from tab2 where ...)

See also Transact-SQL Users Guide, and compute, group by and having clauses, select, where in
Reference Manual: Commands

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
120 PUBLIC Transact-SQL Functions

Permissions

Any user can execute count.

Related Information

Expressions [page 468]

3.29 count_big

Returns the number of (distinct) non-null values, or the number of selected rows as abigint.

Syntax
count big([all | distinct] <expression>)

Parameters

all
applies count_bigtoall values. a1l is the default.

distinct
eliminates duplicate values before count bigis applied. distinct is optional.

<expression>
is a column name, constant, function, any combination of column names, constants,
and functions connected by arithmetic or bitwise operators, or a subquery. With
aggregates, an expression is usually a column name.

Examples

Example 1

Finds the number of occurrences of <name> in systypes:
1> select count big(name) from systypes

2> go

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

121

Usage

When distinct is specified, count_big finds the number of unique non-null values. Null values are
ignored when counting.

count big(<column_ name>) returns avalue of O on empty tables, on columns that contain only null
values, and on groups that contain only null values.

count_big (*) finds the number of rows. count big (*) does not take any arguments, and cannot be
used with distinct. All rows are counted, regardless of the presence of null values.

When tables are being joined, include count _big (*) inthe select list to produce the count of the number
of rows in the joined results. If the objective is to count the number of rows from one table that match
criteria, use count _big (<column_ name>).

You can use count_big as an existence check in a subquery. For example:

select * from tab where 0 <
(select count big(*) from tab2 where ...)

However, because count big counts all matching values, exists or in may return results faster. For
example:

select * from tab where exists
(select * from tab2 where ...)

See also compute clause, group by and having clauses, select,where clause commandsin
Reference Manual: Commands

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute count big.

122

Reference Manual: Building Blocks
PUBLIC Transact-SQL Functions

3.30 create_locator

Explicitly creates a locator for a specified LOB then returns the locator.

The locator created by create locator is valid only for the duration of the transaction containing the query
that used create locator. If notransaction was started, then the locator is valid only until the query
containing the create locator completes execution

Syntax

create locator (<datatype>, <lob expression>)

Parameters

<datatype>
is the datatype of the LOB locator. Valid values are:

® text locator
® unitext locator

® image locator

<lob_expression>

is a LOB value of datatype text, unitext, or image.

Examples

Example 1

Creates a text locator from a simple text expression:

select create locator (text locator, convert (text, "abc"))
Example 2

Creates a local variable <@v> of type text locator, and then creates alocator using <@v> as a handle to
the LOB stored in the textcol columnofmy table.

declare @v text locator
select @v = create locator (text locator, textcol) from my table where
id=10

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 123

Usage

See also deallocate locator, truncate lob in Reference Manual: Commands.

Permissions

Any user can execute create locator.

Related Information

locator_literal [page 236]
locator_valid [page 237]
return_lob [page 315]

3.31 current_bigdatetime

Finds the current date as it exists on the server, and returns a bi gt ime value representing the current time
with microsecond precision. The accuracy of the current time portion is limited by the accuracy of the system
clock.

Syntax

current bigdatetime ()

Examples

Example 1

Find the current bigdatetime:

select current bigdatetime ()

Nov 25 1995 10:32:00.010101AM

Reference Manual: Building Blocks
124 PUBLIC Transact-SQL Functions

Example 2

Find the current bigdatetime:

select datepart (us, current bigdatetime())

010101

Usage

See also select, where clause in Reference Manual: Commands.

Standards

ANSI SQL - Compliance level: Entry-level compliant.

Permissions

Any user can execute current date.

Related Information

Date and Time Datatypes [page 19]
dateadd [page 138]

datediff [page 142]

datepart [page 148]

datename [page 145]
current_bigtime [page 126]

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 125

3.32 current_bigtime
Finds the current date as it exists on the server, and returns a bigtime value representing the current time with

microsecond precision. The accuracy of the current time portion is limited by the accuracy of the system clock.

Syntax

current bigtime ()

Examples

Example 1

Finds the current bigtime:

select current bigtime ()

10:32:00.010101AM
Example 2

Finds the current bigtime:

select datepart (us, current bigtime())

Usage

See also select, where clause in Reference Manual: Commands.

Standards

ANSI SQL — Compliance level: Entry-level compliant.

Permissions

Any user can execute current date.

Reference Manual: Building Blocks
126 PUBLIC Transact-SQL Functions

Related Information

Date and Time Datatypes [page 19]
dateadd [page 138]

datediff [page 142]

datepart [page 148]

datename [page 145]
current_bigdatetime [page 124]

3.33 current_date

Finds and returns the current date as it exists on the server.

Syntax

current date ()

Examples

Example 1

|dentifies the current date with datename:

1> select datename (month, current date())
2> go

Example 2

Identifies the current date with datepart:

1> select datepart (month, current date())
2> go

(1 row affected)

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

127

Usage

See also select, where clause in Reference Manual: Commands.

Standards

ANSI SQL - Compliance level: Entry-level compliant.

Permissions

Any user can execute current date.

Related Information

Date and Time Datatypes [page 19]
dateadd [page 138]

datename [page 145]

datepart [page 148]

getdate [page 186]

3.34 current_time

Finds and returns the current time as it exists on the server.

Syntax

current time ()

Reference Manual: Building Blocks
128 PUBLIC Transact-SQL Functions

Examples

Example 1

Finds the current time:

1> select current time ()
2> go

12:29PM
(1 row affected)

Example 2

Use with datename:

1> select datename (minute, current time())
2> go

45
(1 row affected)

Usage

See also select, where clause in Reference Manual: Commands.

Standards

ANSI SQL — Compliance level: Entry-level compliant.

Permissions

Any user can execute current time.

Related Information

Date and Time Datatypes [page 19]
dateadd [page 138]

datename [page 145]

datepart [page 148]

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 129

getdate [page 186]

3.35 curunreservedpgs

Displays the number of free pages in the specified disk piece.

Syntax

curunreservedpgs (dbid, lstart, unreservedpgs)

Parameters

dbid
is the ID for a database. These are stored inthe db_id column of sysdatabases.

Istart
is the starting logical page number for the disk piece for which you are retrieving data.
lstart uses anunsigned int datatype.

unreservedpgs
is the default value curunreservedpgs returns if no in-memory data is available.
unreservedpgs USeS an unsigned int datatype.

Examples

Example 1

130

Returns the database name, device name, and the number of unreserved pages for each device fragment

If a database is open, curunreservedpgs takes the value from memory. If it is not in use, the value is
taken from the third parameter you specify in curunreservedpgs. In this example, the value comes from
the unreservedpgs columnin the sysusages table.

select db _name (dbid) DBName, d.name DeviceName,
curunreservedpgs (dbid, lstart, unreservedpgs) UnreservedPgs
from sysusages u, sysdevices d

where u.vdevno=d.vdevno

and d.status &2 = 2

DBName DeviceName unreservedpgs
master master 1634
tempdb master 423
model master 423

Reference Manual: Building Blocks
PUBLIC Transact-SQL Functions

pubs2 master

sybsystemdb master

sybsystemprocs master

sybsyntax master
Example 2

Displays the number of free pages on the segment for dbid starting on sysusages.lstart:

select curunreservedpgs (dbid, sysusages.lstart, O0)
Example 3

Selects the number of free pages from imrsdb:

select db_name (dbid) DBName, d.name DeviceName,

curunreservedpgs (dbid, lstart, unreservedpgs) unreservedpgs

from sysusages u, sysdevices d
where u.vdevno=d.vdevno
and d.status2 &16 = 16

DBName DeviceName
imrsdb imrslog
Usage

If a database is open, the value returned by curunreservedpgs is taken from memory. If it is not in use, the
value is taken from the third parameter you specify in curunreservedpgs.

curunreservedpgs returns the number of free pages for imrslog on-disk row storage devices.

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute curunreservedpgs

Reference Manual: Building Blocks
Transact-SQL Functions

72
399
6577
359

unreservedpgs

PUBLIC

131

Auditing

You can enable func_dbaccess auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationinextrainfo:

func_dbaccess 86 curunreservedpgs ® Roles - Current active roles
e Keywords or options — CURUNRESERVEDPGS
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Related Information

db_id [page 156]
Ict_admin [page 226]

3.36 data_pages

Returns the number of pages used by the specified table, index, or a specific partition. The result does not
include pages used for internal structures.

Syntax

data pages(<dbid>, <object id> [, <indid> [, <ptnid>]])

Parameters

<dbid>
is the database ID of the database that contains the data pages.

<object_id>

Reference Manual: Building Blocks
132 PUBLIC Transact-SQL Functions

is an object ID for a table, view, or other database object. These are stored in the id
column of sysobjects.

<indid>
is the index ID of the target index.
<ptnid>
is the partition ID of the target partition.
Examples
Example 1

Returns the number of pages used by the object with an object ID of 31000114 in the specified database
(including any indexes):

select data pages (5, 31000114)
Example 2

(In cluster environments) Returns the number of pages used by the object in the data layer, regardless of
whether or not a clustered index exists:

select data pages (5, 31000114, O0)
Example 3

(In cluster environments) Returns the number of pages used by the object in the index layer for a clustered
index. This does not include the pages used by the data layer:

select data pages (5, 31000114, 1)
Example 4

Returns the number of pages used by the object in the data layer of the specific partition, which in this case
is 2323242432:

select data pages (5, 31000114, 0, 2323242432)

Usage

In the case of an APL (all-pages lock) table, if a clustered index exists on the table, then passing in an <indid>
of:

e (O - reports the data pages.
e 1 -reports the index pages.

All'erroneous conditions return a value of zero, such as when the <object id> does not exist in the current
database, or the targeted <indid> or <ptnid> cannot be found.

Instead of consuming resources, data_pages discards the descriptor for an object that is not already in the
cache.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 133

This function replaces data pgs and ptn_data pgs from versions of SAP ASE earlier than 15.0.

See also sp_spaceused in Reference Manual: Procedures.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute data_pages.

Auditing

You can enable func_obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func obj access 86 data pages ® Roles — Current active roles
® Keywords or options — DATA PAGES
® Previous value — NULL
® Current value — NULL
e QOther information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Related Information

object_id [page 273]
row_count [page 329]

Reference Manual: Building Blocks
134 PUBLIC Transact-SQL Functions

3.37 datachange

Measures the amount of change in the data distribution since update statistics lastran. Specifically, it
measures the number of inserts, updates, and deletes that have occurred on the given object, partition,

or column, and helps you determine if invoking update statistics would benefit the query plan.

Syntax

datachange (<object name>, <partition name>, <column name>)

Parameters

<object_name>

is the object name in the current database.
<partition_name>

is the data partition name. This value can be null.
<column_name>

is the column name for which the datachange is requested. This value can be null.

Examples

Example 1

Provides the percentage change in the au_id columninthe author ptn partition:
select datachange ("authors", "author ptn", "au_id")

Example 2

Provides the percentage change in the authors table on the au_ptn partition. The null value for the
<column name> parameter indicates that this checks all columns that have histogram statistics and
obtains the maximum datachange value from among them.

select datachange ("authors", "au ptn", null)

Permissions

Any user can execute datachange.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

135

3.37.1 Usage for datachange

There are additional considerations for using datachange.

The datachange function requires all three parameters.

datachange is a measure of the inserts, deletes and updates but it does not count them individually.
datachange counts an update asadelete and an insert, so each update contributes a count of 2
towards the datachange counter.

The datachange built-in returns the datachange count as a percent of the number of rows, but it bases this
percentage on the number of rows remaining, not the original number of rows. For example, if a table has
five rows and one row is deleted, datachange reports a value of 25 % since the current row count is 4 and
the datachange counteris 1.

datachange is expressed as a percentage of the total number of rows in the table, or partition if you
specify a partition. The percentage value can be greater than 100 percent because the number of changes
to an object can be much greater than the number of rows in the table, particularly when the number of
deletes and updates happening to a table is very high.

The value that datachange displays is the in-memory value. This can differ from the on-disk value
because the on-disk value gets updated by the housekeeper, when yourun sp_flushstats, or whenan
object descriptor gets flushed.

The datachange values is not reset when histograms are created for global indexes on partitioned tables.
Instead of consuming resources, datachange discards the descriptor for an object that is not already in
the cache.

datachange is reset or initialized to zero when:

New columns are added, and their datachange value is initialized.

New partitions are added, and their datachange value is initialized.

Data-partition-specific histograms are created, deleted or updated. When this occurs, the datachange
value of the histograms is reset for the corresponding column and partition.

Data is truncated for a table or partition, and its datachange value is reset

A table is repartitioned either directly or indirectly as a result of some other command, and the
datachange value is reset for all the table’s partitions and columns.

A table is unpartitioned, and the datachange value is reset for all columns for the table.

3.37.1.1 Restrictions for datachange

datachange has the following restrictions:

136

datachange statistics are not maintained on tables in system tempdbs, user-defined tempdbs, system
tables, or proxy tables.

datachange updates are non-transactional. If you roll back a transaction, the datachange values are not
rolled back, and these values can become inaccurate.

If memory allocation for column-level counters fails, the SAP ASE server tracks partition-level datachange
values instead of column-level values.

If the SAP ASE server does not maintain column-level datachange values, it then resets the partition-level
datachange values whenever the datachange values for a column are reset.

Reference Manual: Building Blocks
PUBLIC Transact-SQL Functions

3.38 datalength

Returns the actual length, in bytes, of the specified column or string.

Syntax

datalength (<expression>)

Parameters

<expression>

is a column name, variable, constant expression, or a combination of any of these that
evaluates to a single value. <expression> can be of any datatype, anis usually a
column name. If <expression> is a character constant, it must be enclosed in quotes.

Examples

Example 1

Finds the length of the pub_name column in the publishers table:

select Length = datalength (pub name)
from publishers

Length
13
16
20
Usage

® datalength returns the uncompressed length of a large object column, even when the column is
compressed.
e For columns defined for the Unicode datatype, datalength returns the actual number of bytes of the data

stored in each row. For example, this is what is returned if a unitext column ut contains row value U+0041U
+0042U+d800dc00:

select datalength(ut) from unitable

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 137

® datalength finds the actual length of the data stored in each row. datalength is useful on varchar,
univarchar, varbinary, text, and image datatypes, since these datatypes can store variable lengths
(and do not store trailing blanks). When a char or unichar value is declared to allow nulls, the SAP ASE
server stores it internally as varchar or univarchar. For all other datatypes, datalength reports the
defined length.

® datalength acceptsthe text locator,unitext locator,and image locator LOB datatypes.

® datalength of any NULL data returns NULL.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute datalength.

Related Information

char_length [page 93]
col_length [page 99]

3.39 dateadd

Adds an interval to a specified date or time.

Syntax

dateadd (<date part>, <integer>, {<date> | <time> | <bigtime> | <datetime>, |
<bigdatetime>})

Reference Manual: Building Blocks
138 PUBLIC Transact-SQL Functions

Parameters

<date_part>

is a date part or abbreviation. For a list of the date parts and abbreviations recognized

by the SAP ASE server, see Transact-SQL Users Guide.
<numeric>
is an integer expression.

<date expression>

is an expression of type datetime, smalldatetime, bigdatetime, bigtime, date,

time, or a character string in a datetime format.

Examples

Example 1

Adds one million microseconds to a bigtime:

declare @a bigtime
select @a = "14:20:00.010101"
select dateadd(us, 1000000, Qa)

2:20:01.010101pPM
Example 2

Adds 25 hours to a bigdatetime and the day increments:

declare @a bigdatetime
select @a = "apr 12, 0001 14:20:00 "
select dateadd(hh, 25, @a)

Apr 13 0001 2:20PM

Example 3

Displays the new publication dates when the publication dates of all the books in the titles table slip by

21 days:

select newpubdate = dateadd(day, 21, pubdate)
from titles

Example 4
Adds one day to a date:

declare @a date
select Qa = "apr 12, 9999"
select dateadd(dd, 1, @a)

Apr 13 9999

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

139

Example 5

Subtracts five minutes to a time:

select dateadd(mi, -5, convert (time, "14:20:00"))

Example 6

Adds one day to a time and the time remains the same:

declare @a time
select @a = "14:20:00"
select dateadd(dd, 1, Qa)

Example 7

Adds higher values resulting in the values rolling over to the next significant field, even though there are
limits for each date part, as with datetime values:

—-—-Add 24 hours to a datetime
select dateadd (hh, 24, "4/1/1979")
Apr 2 1979 12:00AM

--Add 24 hours to a date

select dateadd (hh, 24, "4/1/1979")

Usage

140

dateadd, a date function, adds an interval to a specified date. For information about dates, see Transact-
SOL Users Guide.

dateadd takes three arguments: the date part, a number, and a date. The result is a datet ime value equal
to the date plus the number of date parts. If the last argument is abigtime, and the datepart is a year,
month, or day, the result is the original bigtime argument.

If the date argument is a smalldatetime value, the resultis also a smalldatetime. You can use
dateadd to add seconds or milliseconds to a smalldatetime, but such an addition is meaningful only if
the result date returned by dateadd changes by at least one minute.

If a string is given as an argument in place of the chronological value the server interpretsit as a datetime
value regardless of its apparent precision. This default behavior may be changed by setting the
configuration parameter builtin date strings orthe setoptionbuiltin date strings. When
these options are set, the server interprets strings given to chronological builtins as bigdatetimes. See the
System Administration Guide for more information.

When a datepart of microseconds is given to this built-in string, values are always interpreted as
bigdatetime

Use the datetime datatype only for dates after January 1, 1753. datet ime values must be enclosed in
single or double quotes. Use the date datatype for dates from January 1, 0001 to 9999. date must be
enclosed in single or double quotes.Use char, nchar, varchar, or nvarchar for earlier dates. The SAP
ASE server recognizes a wide variety of date formats.

Reference Manual: Building Blocks
PUBLIC Transact-SQL Functions

The SAP ASE server automatically converts between character and datetime values when necessary (for
example, when you compare a character value to a datetime value).

e Using the date part weekday or dw with dateadd is not logical, and produces spurious results. Use day or
dd instead.

Table 14: date_part Recognized Abbreviations

Date part Abbreviation Values

Year vy 1753 - 9999 (datetime)
1900 - 2079 (smalldatetime)

0001 -9999 (date)

Quarter qq 1-4
Month mm 1-12
Week wk 1054
Day dd 1-7
dayofyear dy 1-366
Weekday dw 1-7
Hour hh 0-23
Minute mi 0-59
Second ss 0-59
millisecond ms 0-999
microsecond us 0-999999
See also:

e System Administration Guide, Transact-SQL Users Guide
® select, where clause in Reference Manual: Commands

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute dateadd.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 141

Related Information

User-Defined Datatypes [page 56]
Date and Time Datatypes [page 19]
datediff [page 142]

datename [page 145]

datepart [page 148]

getdate [page 186]

3.40 datediff

Calculates the number of date parts between two specified dates or times.

Syntax

datediff (<datepart>, {<date, date >| <time>, <time> | <bigtime>, <bigtime> |
<datetime>, <datetime> | <bigdatetime>, <bigdatetime>}])

Parameters

<datepart>

is a date part or abbreviation. For a list of the date parts and abbreviations recognized
by the SAP ASE server, see Transact-SQL Users Guide.

<date expressionl>

is an expression of type datetime, smalldatetime, bigdatetime, bigtime,
date, time, or a character string in a datetime format.

<date expression2>

is an expression of type datetime, smalldatetime, bigdatetime, bigtime
date, time, or a character string in a datetime format.

Examples

Example 1

Returns the number of microseconds between two bigdatetimes:

declare @a bigdatetime

Reference Manual: Building Blocks
142 PUBLIC Transact-SQL Functions

declare @b bigdatetime

select @a = "apr 1, 1999 00:00:00.000000"
select @b = "apr 2, 1999 00:00:00.000000"
select datediff (us, Qa, (@b)

86400000000
Example 2

Returns the overflow size of milliseconds return value:

select datediff (ms, convert (bigdatetime, "4/1/1753"), convert (bigdatetime,
"4/1/9999"))

Msg 535, Level 16, State O:

Line 2:

Difference of two datetime fields caused overflow at runtime.

Command has been aborted

Example 3

Finds the number of days that have elapsed between pubdate and the current date (obtained with the
getdate function):

select newdate = datediff (day, pubdate, getdate())
from titles

Example 4

Finds the number of hours between two times:

declare @a time

declare @b time

select @a = "20:43:22"
select @b = "10:43:22"
select datediff (hh, Qa, @b)

Example 5

Finds the number of hours between two dates:

declare @a date
declare @b date

select Qa = "apr 1, 1999"
select @b = "apr 2, 1999"
select datediff (hh, Q@a, @b)
24
Example 6

Finds the number of days between two times:

declare @a time

declare @b time

select @a = "20:43:22"
select @b = "10:43:22"
select datediff (dd, Qa, @b)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 143

Example 7

Returns the overflow size of milliseconds return value:

select datediff (ms, convert (date, "4/1/1753"), convert (date, "4/1/9999"))
Msg 535, Level 16, State O:

Line 2:

Difference of two datetime fields caused overflow at runtime.

Command has been aborted

Usage

144

datediff takes three arguments. The first is a datepart. The second and third are chronological values.
For dates, times, datetimes and bigdatetimes, the result is a signed integer value equal to date2 and
datel, in date parts.
o If the second or third argument is a date, and the datepart is an hour, minute, second, millisecond, or
microsecond, the dates are treated as midnight.
o |Ifthe second or third argument is a time, and the datepart is a year, month, or day, then zero is
returned.
0 datediff results are truncated, not rounded when the result is not an even multiple of the datepart.
o For the smaller time units, there are overflow values and the function returns an overflow error if you
exceed these limits.
datediff produces results of datatype int, and causes errors if the result is greater than 2,147483,647.
For milliseconds, this is approximately 24 days, 20:31.846 hours. For seconds, this is 68 years, 19 days,
3:14:07 hours.
datediff results are always truncated, not rounded, when the result is not an even multiple of the date
part. For example, using hour as the date part, the difference between “4:00AM” and “5:50AM" is 1.
When you use day as the date part, datedi f £ counts the number of midnights between the two times
specified. For example, the difference between January 1, 1992, 23:00 and January 2, 1992, 01:00 is 1; the
difference between January 1, 1992 00:00 and January 1, 1992, 23:59 is O.
The month datepart counts the number of first-of-the-months between two dates. For example, the
difference between January 25 and February 2 is 1; the difference between January 1 and January 31is O.
When you use the date part week with datediff, you see the number of Sundays between the two dates,
including the second date but not the first. For example, the number of weeks between Sunday, January 4
and Sunday, January 11is 1.
If you use smalldatetime values, they are converted to datetime values internally for the calculation.
Seconds and milliseconds in smalldatetime values are automatically set to O for the purpose of the
difference calculation.
If the second or third argument is a date, and the datepart is hour, minute, second, or millisecond, the
dates are treated as midnight.
If the second or third argument is a time, and the datepart is year, month, or day, then O is returned.
datediff results are truncated, not rounded, when the result is not an even multiple of the date part.
If a string is given as an argument in place of the chronological value the server interprets it as a datetime
value regardless of its apparent precision. This default behavior may be changed by setting the
configuration parameter builtin date stringsorthesetoptionbuiltin date strings.When
these options are set, the server interprets strings given to chronological builtins as bigdatetimes. See
the System Administration Guide for more information.

Reference Manual: Building Blocks
PUBLIC Transact-SQL Functions

e \When a datepart of microseconds is given to this built-in, string values are always interpreted as
bigdatetime
e For the smaller time units, there are overflow values, and the function returns an overflow error if you
exceed these limits:
o Microseconds:approx 3 days
o Milliseconds: approx 24 days
o Seconds: approx 68 years
o Minutes: approx 4083 years
o Others: No overflow limit

See also System Administration Guide, Transact-SQL Users Guide, and select and where clause in Reference
Manual: Commands.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute datediff.

Related Information

Date and Time Datatypes [page 19]
dateadd [page 138]

datename [page 145]

datepart [page 148]

getdate [page 186]

3.41 datename

Returns the specified datepart of the specified date or time as a character string.

Syntax

datename (<datepart> {<date> | <time> | <bigtime> | <datetime> | <bigdatetime>})

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 145

Parameters

<datepart>

is a date part or abbreviation. For a list of the date parts and abbreviations recognized

by the SAP ASE server, see Transact-SQL Users Guide.

<date_expression>

is an expression of type datetime, smalldatetime, bigdatetime, bigtime, time or a

character string in a datetime format.

Examples

146

Example 1

Finds the month name of abigdatetime:

declare @a bigdatetime

select @a = "apr 12, 0001 00:00:00.010101"

select datename (mm, @a)

Example 2

Assumes a current date of November 20, 2000:

select datename (month, getdate())

November
Example 3

Finds the month name of a date:

declare @a date
select @a = "apr 12, 0001"
select datename (mm, Qa)

Example 4

Finds the seconds of a time:

declare @a time
select @a = "20:43:22"
select datename (ss, Qa)

PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

Usage

® datename, a date function, returns the name of the specified part (such as the month “June”) of a
datetime or smalldatetime value, as acharacter string. If the result is numeric, such as “23" for the
day, it is still returned as a character string.

® Takesadate, time,bigdatetime, bigtime, datetime, Or smalldatetime value as its second
argument

e The date part weekday or dw returns the day of the week (Sunday, Monday, and so on) when used with
datename.

e Since smalldatetime is accurate only to the minute, when a smalldatetime value is used with
datename, seconds and milliseconds are always O.

See also select, where clause in Reference Manual: Commands.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute datename.

Related Information

Date and Time Datatypes [page 19]
dateadd [page 138]

datename [page 145]

datepart [page 148]

getdate [page 186]

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

147

3.42 datepart

Returns the integer value of the specified part of a date expression

Syntax

datepart (<date part> {<date> | <time> | <datetime> | <bigtime> | <bigdatetime>}))

Parameters

<date_part>

is a date part. The date parts, their abbreviations recognized by datepart, and their
acceptable values are.

Date Part Abbreviation Values

year vy 1753 - 9999 (2079 for smalldatetime). 0001 to 9999 for
date

quarter qq 1-4

month mm 1-12

week wk 1-54

day dd 1-31

dayofyear dy 1-366

weekday dw 1-7(Sun.-Sat.)

hour hh 0-23

minute mi 0-59

second ss 0-59

milliseco ms 0-999

nd

microseco us 0-999999

nd

Reference Manual: Building Blocks
148 PUBLIC Transact-SQL Functions

Date Part Abbreviation Values

calweekof cwk 1-53

year

calyearof cyr 1753 - 9999 (2079 for smalldatetime). 0001 to 9999 for
week date

caldayofw cdw 1-7

eek

When you enter a year as two digits (<yy>):

e Numbers less than 50 are interpreted as 20<yy>. For example, 01 is 2001, 32 is
2032, and 49 is 2049.

e Numbers equal to or greater than 50 are interpreted as 19<yy>. For example, 50 is
1950, 74 is 1974, and 99 is 1999.
For datetime, smalldatetime, and time types milliseconds can be preceded by
either a colon or a period. If preceded by a colon, the number means thousandths
of a second. If preceded by a period, a single digit means tenths of a second, two
digits mean hundredths of a second, and three digits mean thousandths of a
second. For example, “12:30:20:1" means twenty and one-thousandth of a second
past 12:30; “12:30:20.1" means twenty and one-tenth of a second past 12:30.
Microseconds must be preceded by a decimal point and represent fractions of a
second.

<date_expression>

is an expression of type datetime, smalldatetime, bigdatetime, bigtime, date,
time, or a character string in a datetime format.

Examples

Example 1

Finds the microseconds of abigdatetime:

declare (@a bigdatetime
select Qa = "apr 12, 0001 12:00:00.000001"
select datepart (us, @a)

Example 2

Assumes a current date of November 25, 1995:

select datepart (month, getdate())

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 149

150

Example 3

Returns the year of publication from traditional cookbooks:

select datepart (year, pubdate)
where type = "trad cook"

1990
1985
1987

Example 4

from titles

Returns the calendar week of January 1, 1993:

select datepart (cwk, '1993/01/01")

Example 5

Returns the calendar year of the week January 1, 1993:

select datepart(cyr,’1993/01/01")

Example 6

Returns the day of the year for January 1, 1993:

select datepart (cdw,”1993/01/01")

Example 7

Find the hours in a time:

declare @a time
select @a = "20:43:22"
select datepart (hh, @Qa)

Example 8

Returns O (zero) if an hour, minute, or second portion is requested from a date using datename or
datepart the result is the default time; Returns the default date of Jan 11990 if month, day, or year is

requested from a time using datename or datepart:

--Find the hours in a date
declare @a date

select @a = "apr 12, 0001"
select datepart (hh, @a)

--Find the month of a time
declare @a time

select @a = "20:43:22"
select datename (mm, Qa)

January

PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

When you give a null value to a datetime function as a parameter, NULL is returned.

Usage

Returns the specified datepart in the first argument of the specified date, and the second argument, as
aninteger. Takes a date, time, datetime, bigdatetime, bigtime, or smalldatetime value as its
second argument. If the datepart is hour, minute, second, millisecond, or microsecond, the result is O.
datepart returns a number that follows ISO standard 8601, which defines the first day of the week and
the first week of the year. Depending on whether the datepart function includes a value for
calweekofyear, calyearofweek, Oor caldayorweek, the date returned may be different for the same
unit of time. For example, if the SAP ASE server is configured to use U.S. English as the default language,
the following returns 1988:

datepart (cyr, "1/1/1989")
However, the following returns 1989:
datepart (yy, "1/1/1989)

This disparity occurs because the ISO standard defines the first week of the year as the first week that
includes a Thursday and begins with Monday.

For servers using U.S. English as their default language, the first day of the week is Sunday, and the first
week of the year is the week that contains January 4th.

The date part weekday or dw returns the corresponding number when used with datepart. The numbers
that correspond to the names of weekdays depend on the datefirst setting. Some language defaults
(including us_english) produce Sunday=1, Monday=2, and so on; others produce Monday=1, Tuesday=2,
and so on.You can change the default behavior on a per-session basis with set datefirst. See the
datefirst option of the set command for more information.

calweekofyear, which can be abbreviated as cwk, returns the ordinal position of the week within the year.
calyearofweek, which can be abbreviated as cyr, returns the year in which the week begins.
caldayofweek, which can abbreviated as cdw, returns the ordinal position of the day within the week. You
cannot use calweekofyear, calyearofweek, and caldayofweek as date parts for dateadd,
datediff, and datename.

Since datetime and time are only accurate to 1/300th of a second, when these datatypes are used with
datepart, milliseconds are rounded to the nearest 1/300th second.

Since smalldatetime is accurate only to the minute, when a smalldatetime value is used with
datepart, seconds and milliseconds are always O.

The values of the weekday date part are affected by the language setting.

See also select, where clause in Reference Manual: Commands.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 151

Permissions

Any user can execute datepart.

Related Information

Date and Time Datatypes [page 19]
dateadd [page 138]

datediff [page 142]

datename [page 145]

getdate [page 186]

3.43 day

Returns an integer that represents the day in the datepart of a specified date.

Syntax

day (<date expression>)

Parameters

<date_expression>

is an expression of type datetime, smalldatetime, date, or a character stringina
datetime format.

Examples

Example 1

Returns the integer 02:

select day("11/02/03"™)

Reference Manual: Building Blocks
152 PUBLIC Transact-SQL Functions

Usage

day (<date expression>) isequivalentto datepart (dd, <date expression>).

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute day.

Related Information

System and User-Defined Datatypes [page 13]
datepart [page 148]

month [page 260]

year [page 453]

3.44 db_attr

Returns the durability, dml_ logging, and template settings, and compression level for the specified
database.

Syntax
db attr('<database name>' | <database ID> | NULL, 'attribute')
Parameters

<database name>

name of the database.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 153

<database_ID>

ID of the database
NULL
ifincluded, db_attr reports on the current database
attribute
is one of:
help display db_attr usage information.
durability returns durability of the given database: full, at shutdown,
Orno_recovery
dml logging returns the value for data manipulation language (DML)
logging for specified database: full orminimal.
template returns the name of the template database used for the
specified database. If no database was used as a template to
create the database, returns NULL.
inrow_lob_length Returns thein-row storage length, in bytes, for LOBs.
lob_compression Returns the compression level of the LOB.
index_compression Returns page if page-level index compression is enabled;
returns none otherwise.
compression returns the compression level for the database.
list_dump_ fs identifies the features to be included in future dumps,
including whether the dump includes in-memory row storage-
enabled tables.You may not be able to load a database or
transaction dumps that are generated in a later version into
an earlier version. Captured in database and transaction
dumps are the features that are in use in a database, and
objects that are created using newer features. Before
generating such dumps, use 1ist dump_fs to identify the
features to be included in future dumps.
get_dump fs Returns a hexadecimal bitmap of features used in the
database.
Examples
Example 1

154

Returns the syntax for db_attr:

select db_attr (0, "help")

Usage: db attr('dbname' | dbid | NULL, 'attribute')
List of options in attributes table:
0 : help
PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

durability

dml logging
template
inrow lob length
lob compression
index compression
compression

list dump fs

O JOo Ul WM

e

get dump fs
Example 2

Selects the name, durability setting, dml logging setting and template used from sysdatabases:

select name = convert (char(20), name),
durability = convert (char(15), db_attr (name, "durability")),
dml logging = convert (char(15), db attr(dbid, "dml logging")),

template = convert (char(15), db_attr(dbid, "template"))
from sysdatabases

name durability dml logging template
master full full NULL
model full full NULL
tempdb no_recovery full NULL
sybsystemdb full full NULL
sybsystemprocs full full NULL
repro full full NULL
imdb no_recovery full dbl
db full full NULL
at shutdown db at shutdown full NULL
dbl full full NULL
dml at shutdown minimal NULL
Example 3

Runs db_attr against the DoesNotExist database, which does not exist:

select db_attr ("DoesNotExist", "durability")

Example 4

Runs db_attr against a database with an ID of 12345, which does not exist:

select db _attr (12345, "durability")

Example 5

Runs db_attr against an attribute that does not exist:

select db_attr(l, "Cmd Does Not Exist")

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 155

Example 6

Returns the various features that are in use for the <pubs2> database, and the target server version, which
can safely load such dumps. The last line in bold indicates that the optimized data load with parallel index
updates was executed in this database, and is contained in the transaction log.

1> select db attr('pubs2',

'list dump fs')

Features found active in the database that will be recorded in

2> go
header:
ID= 3: 15.
ID= 4: 15.
ID= 7: 15.

TDR=13fs 15
ID=14:15.7.0.

7
7
7o
ID=11: 15.7.
7
1

0
0
0
0
.0.
10:

.007:
.000:
.020:
.100:
100:

Database
Database
Database
Database
Database

has
has
has
has
has

compressed tables at version 1
system catalog changes made in
system catalog changes made in
the Sysdams catalog

indexes sorted using RID value

Log has transactions generating parallel index operations

a subsequent dump

15.7 GA
15.7 ESD#02

comparison

Future dumps of <pubs2> will be loadable only in the target server version indicated. To load the dumps of
such a database in a target version that is earlier than the version listed, downgrade the database to

remove the footprint of newer features.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permission

S

Any user can execute db_attr.

3.45 db_id

Displays the ID number of the specified database.

Syntax

db id(<database name>)

Parameters

<database name>

156 PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

is the name of a database. <database name> must be a character expression. Ifitis a
constant expression, it must be enclosed in quotes.

Examples

Example 1

Returns the ID number of sybsystemprocs

select db_id("sybsystemprocs")

Usage

If you do not specify a <database name>, db_idreturns the ID number of the current database.

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute db_id.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 157

Auditing

You can enable func_ dbaccess auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event = Command or access audited Information in extrainfo:

func_dbaccess 86 db_id ® Roles — Current active roles
® Keywords or options —DB_ID
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

Example of extrainfo after executing db_id:

sa role sso role oper role sybase ts role mon role; DB ID; ; ;
; ; sal/ase;

For more information about auditing, see Security Administration Guide > Auditing.

Related Information

db_name [page 160]
object_id [page 273]

3.46 db_instanceid

(Cluster environments only) Returns the ID of the owning instance of a specified local temporary database.
Returns NULL if the specified database is a global temporary database or a nontemporary database.

Syntax

db instanceid (<database id>)
db_instanceid(<database name>)

Reference Manual: Building Blocks
158 PUBLIC Transact-SQL Functions

Parameters

<database_ id>
ID of the database.

<database name>

name of the database

Examples

Example 1

Returns the owning instance for database ID 5

select db instanceid(5)

Usage

Access to a local temporary database is allowed only from the owning instance. db_instanceid determines
whether the specified database is a local temporary database, and the owning instance for the local temporary
database.You can then connect to the owning instance and access its local temporary database.

You must include an parameter with db_instanceid.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can run sdc_intempdbconfig.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 159

Auditing

You can enable func_dbaccess auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationinextrainfo:

func_dbaccess 86 db_instanceid ® Roles — Current active roles
® Keywords or options — DB_ INSTANCEID
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.47 db_name

Displays the name of the database with the specified ID number.

Syntax

db name ([<database id>])

Parameters

<database_id>

is a numeric expression for the database ID (stored in sysdatabases.dbid).

Examples

Example 1

Returns the name of the current database:

select db name ()

Reference Manual: Building Blocks
160 PUBLIC Transact-SQL Functions

Example 2

Returns the name of database ID 4:

select db name (4)

sybsystemprocs

Usage

If you do not specify <database id>, db_name returns the name of the current database.

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute db_name.

Auditing

You can enable func_dbaccess auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func_dbaccess 86 db_name ® Roles - Current active roles
® Keywords or options — DB_NAME
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 161

Related Information

col_name [page 101]
db_id [page 156]
object_name [page 275]

3.48 db_recovery_status

(Cluster environments only) Returns the recovery status of the specified database. Returns the recovery status
of the current database if you do not include a value for <database ID>or <database name>.

Syntax

db recovery status([<database ID> | <database name>])

Parameters

<database_ID>
is the ID of the database whose recovery status you are requesting.
<database name>

is the name of the database whose recovery status you are requesting.

Examples

Example 1

Returns the recovery status of the current database:
select db recovery status()

Example 2

Returns the recovery status of the database with named test:

select db recovery status("test")

Reference Manual: Building Blocks
162 PUBLIC Transact-SQL Functions

Example 3

Returns the recovery status of a database with a database id of 8:

select db_recovery status(8)

Usage

A return value of:

e (O -indicates the database is not in node-failover recovery.
e 1 - indicates the database is in node-failover recovery.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute func_dbaccess.

Auditing

You can enable func_obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationinextrainfo:

func_dbaccess 86 db_recovery status ® Roles — Current active roles
e Keywords or options —
DB_RECOVERY STATUS
® Previous value — NULL
e Current value — NULL
e Other information — NULL
e Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 163

3.49 dbencryption_status

Reports database encryption/decryption status and progress.

Syntax

dbencryption status ('status'|'progress', <dbid>[,
lstart])

Parameters

status

returns the encryption status of the database you specify in <dbid>. You must supply
<dbid>touse status. The returned values are:

e (O - indicates a normal database.

e] -indicates that a database is encrypted.

e 2 —indicates that a database is being encrypted.

e 3 -indicates that a database is partially encrypted (but not in the process of being
encrypted).

e /4 —indicates that a database is being decrypted.

e 5 —indicates that a database is partially decrypted (but not in the process of being

decrypted).
progress
reports on the percentage of encryption/decryption progress. If you supply:
e <dbid>-progress returns the percentage of processed pages in the whole
database.
® Both <dbid>and <1start> (the logical start page) — progress returns the
percentage of processed pages in the fragment indicated by <1start>.
<dbid>
is the database ID.
Usage

When you use "progress" and SAP ASE finds no progress information, such as when there is no encryption or
decryption operation occurring, or if the encryption/decryption process is finished, SAP ASE returns "-1."

Reference Manual: Building Blocks
164 PUBLIC Transact-SQL Functions

Auditing

You can enable func_dbaccess auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func_dbaccess 86 dbencryption status ® Roles — Current active roles
e Keywords or options —
DBENCRYPTION STATUS
® Previous value — NULL
e Current value = NULL
e QOther information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.50 defrag_status

Returns metrics of any defragmentation operation that is started or ongoing on the named object or partition.

Syntax
defrag status(<dbid>, <objid> [, <ptnid> | -1 [, "<tag>"] 1]
Parameters
<dbid>
is the ID of the target database.
<objid>
is the ID of the target object.
<ptnid>

is the ID of the partition or enter -1.

-1 refers to all the partitions in the table. If <ptnid> is unspecified, -1 is the default
value.

In case of invoking the built-in with four parameters, the third parameter

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 165

'ptnid' cannot be skipped. So, it has to be specified accordingly.

<tag>

is one of:

® frag indexoOr fragmentation index— the fragmentation indexisthe number
of times the size of the object is larger compared to the size of the same if it was
completely defragmented.
This index can be any number greater than or equal to zero. The lower the index,
the less fragmented the table or partition is. The higher the index, the more
fragmented the object is and is more likely to free up space with defragmentation.
For example, a value of 0.2 , means the table occupies 20% more space than what
it would be if the data were fully defragmented. This index can be any number > 0.
For example, 1 means the table is occupying 100% more space than what a fully
defragmented version of the data would occupy.

® pct defragorpct defragmented - is the percentage of pages defragmented.

® pages defragorpages defragmented — the number of pages defragmented

® pages genOr pages generated-— the number of new pages generated.

® pages tbdorpages to be defragmented- the number of pages still left to be
processed and defragmented.

® last run - the start time of the most recent invocation of this command.

® cxecuting - boolean, whether the command is executing currently.

® clapsed mins — the number of minutes elapsed since the start of the most recent
invocation of this command. This value is non-zero when executingis 1, andis
zero otherwise.

Examples

Example 1

executes defrag status on the table mymsgs:
select defrag status(db id(), object id('mymsgs'))

If defragmentation has not yet been performed, the output is:

frag index=0.20, pct defrag=0, pages defrag=0, pages gen=0,
pages tbd=1174, last run=, executing=0, elapsed mins=0

If defragmentation has been performed, the output is:

frag index=0.07, pct defrag=100, pages defrag=1167, pages gen=1072,
pages tbd=0, last run=0Oct 9 2012 2:27:11:446PM, executing=0,
elapsed mins=0

Example 2

executes defrag status on the data partition pl:

select defrag status(db_id(), object id('tl'), partition id('tl', 'pl'))

Reference Manual: Building Blocks
166 PUBLIC Transact-SQL Functions

If defragmentation has not yet been performed, the output is:

frag index=0.75, pct defrag=0, pages defrag=0, pages gen=0, pages tbd=67,
last run=, executing=0, elapsed mins=0

If defragmentation is executed, the output is:

frag index=0.00, pct defrag=100, pages defrag=61, pages gen=32,
pages tbd=0, last run=Oct 9 2012 2:44:53:830PM, executing=0,
elapsed mins=0

If partial defragmentation is executed, the output is:

frag index=0.02, pct defrag=41l, pages defrag=135, pages gen=144,
pages tbd=190, last run=Oct 9 2012 3:17:56:070PM, executing=0,
elapsed mins=0

While defragmentation is in progress, the output is:

frag index=0.90, pct defrag=10, pages defrag=40, pages gen=24,
pages tbd=360, last run=Oct 9 2012 3:01:01:233PM, executing=1,
elapsed mins=1

Example 3

executes the pct defrag parameter:
select defrag status(db_id(), object id('tl'), -1, 'pct defrag')

The output displays the percentage of the pages that have been defragmented.

When 1 row is affected:

select defrag status(db_id(), object id('tl'), partition id('tl', 'pl'),
'pct defrag')

The output is:

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 167

Auditing

You can enable func_obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event = Command or access audited Information in extrainfo:

func_obj access 86 defrag status ® Roles - Current active roles
® Keywords or options — DEFRAG _STATUS
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.51 degrees

Converts the size of the angle from degrees to radians.

Syntax

degrees (<numeric>)

Parameters

<numeric>

is a number, in radians, to convert to degrees.

Reference Manual: Building Blocks
168 PUBLIC Transact-SQL Functions

Examples

Example 1

Returns a radian of 45 degrees:

select degrees (45)

Usage

degrees, a mathematical function, converts radians to degrees. Results are of the same type as the numeric
expression.

For numeric and decimal expressions, the results have an internal precision of 77 and a scale equal to that of
the expression.

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute degrees.

Related Information

radians [page 302]

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 169

3.52 derived_stat

Returns derived statistics for the specified object and index.

Syntax
derived stat ("<object name>" | <object id>,
<index name> | <index id>,
["<partition name>" | <partition id>,]
“<statistic>")
Parameters

<object_name>
is the name of the object you are interested in. If you do not specify a fully qualified
object name, derived stat searches the current database.
<object_id>
is an alternative to <object name>, and is the object ID of the object you are
interested in. <object id>must be in the current database
<index_ name>
is the name of the index, belonging to the specified object that you are interested in.
<index_id>
is an alternative to <index name>, and is the index ID of the specified object that you
are interested in.
<partition_name>

is the name of the partition, belonging to the specific partition that you are interested
in. <partition name> is optional. When you use <partition name> or
<partition_id>,the SAP ASE server returns statistics for the target partition,
instead of for the entire object.

<partition_id>
is an alternative to <partition name>, andis the partition ID of the specified object
that you are interested in. <partition id> is optional.
“<statistic>”
the derived statistic to be returned. Available statistics are:
® data page cluster ratioordpcr — the data page cluster ratio for the object/
index pair
® index page cluster ratioor ipcr —theindex page cluster ratio for the
object/index pair

Reference Manual: Building Blocks
170 PUBLIC Transact-SQL Functions

® data row cluster ratioordrcr - the datarow cluster ratio for the object/
index pair

® large io efficiencyor lgio —thelarge /0 efficiency for the object/index
pair

® space utilization or sput —the space utilization for the object/index pair

Examples

Example 1

Selects the space utilization for the titleidind index of the titles table:

select derived stat("titles", "titleidind", "space utilization")

Example 2

Selects the data page cluster ratio for index ID 2 of the titles table. Note that you can use either "dpcr"

or "data page cluster ratio"

select derived stat ("titles", 2, "dpcr")
Example 3

Statistics are reported for the entire object, as neither the partition ID nor name is not specified:

1> select derived stat (object id("tl"), 2, "drcr")
2> go

0.576923
Example 4

Reports the statistic for the partition t1_928003396:

1> select derived stat (object id("tl1l"), 0, "tl 928003306", "drcr")
2> go

1.000000
(1 row affected)

Example 5

Selects derived statistics for all indexes of a given table, using data from syspartitions:

select convert (varchar (30), name) as name, indid,
convert (decimal (5, 3), derived stat(id, indid, 'sput'
convert (decimal (5, 3), derived stat(id, indid, 'dpcr'
convert (decimal (5, 3), derived stat(id, indid, 'drcr'
3), (id
(l

) as 'sput',
) as 'dpcr',
) as 'drcr',
)

convert (decimal (5, derived stat indid, 'lgio' as 'lgio'
from syspartitions where id = object id('titles')
go
name indid sput dpcr drcr lgio

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

171

172

titleidind 2133579608
titleind 2133579608
(2 rows affected)

Example 6

1 0.895 1.000 1.000 1.000
2 0.000 1.000 0.688 1.000

Selects derived statistics for all indexes and partitions of a partitioned table. Here, mymsgs_rr4 is a round-
robin partitioned table that is created with a global index and a local index.

1> select * into mymsgs rr4 partition by roundrobin 4 lock datarows

2> from master..sysmessages
2> go

(7597 rows affected)

1> create clustered index mymsgs rr4 clustind on mymsgs rré(error, severity)

2> go

1> create index mymsgs rr4 ncindl on mymsgs rrd (severity)

2> go

1> create index mymsgs rr4 ncind2 on mymsgs rré (langid, dlevel) local index
2> go

2> update statistics mymsgs rr4

1>

2> select convert (varchar (10), object name(id)) as name,

3> (select convert (varchar (20), i.name) from sysindexes i

4> where i.id = p.id and i.indid = p.indid),

5> convert (varchar (30), name) as ptnname, indid,

6> convert (decimal (5, 3), derived stat(id, indid, partitionid, 'sput')) as
'sput',

7> convert (decimal (5, 3), derived stat(id, indid, partitionid, 'dpcr')) as
'dpcr',

8> convert (decimal (5, 3), derived stat(id, indid, partitionid, 'drcr')) as
'drcr',

9> convert (decimal (5, 3), derived stat(id, indid, partitionid, 'lgio')) as
'lgio’

10> from syspartitions p

11> where id = object id('mymsgs rr4')

mymsgs rr4 mymsgs rré
1.00 1.000
mymsgs_rr4 mymsgs rré
1.00 1.000
mymsgs rr4 mymsgs rré
1.00 1.000
mymsgs_rr4 mymsgs rré
1.00 1.000

ptnname indid sput dpcr drcr 1
mymsgs_rr4 786098810 0 0.90 1.000
mymsgs_rr4 802098867 0 0.90 1.000
mymsgs rr4 818098924 0 0.89 1.000
mymsgs_rr4 834098981 0 0.90 1.000

mymsgs_rr4 mymsgs rr4 clustind mymsgs rr4 clustind 850099038 2 0.83 0.995

1.00 1.000
mymsgs_rr4 mymsgs rr4 ncindl
0.88 1.000
mymsgs_rr4 mymsgs rr4 ncind2
1.00 1.000
mymsgs_rr4 mymsgs rr4 ncind2
1.00 1.000
mymsgs_ rr4 mymsgs rr4 ncind2
1.000 1.000
mymsgs_rr4 mymsgs rr4 ncind2
1.000 1.000

PUBLIC

mymsgs_rr4 ncindl 882099152 3 0.99 0.445

mymsgs_rr4 ncind2 898099209 4 0.15 1.000

mymsgs_rr4 ncind2 914099266 4 0.88 1.000
mymsgs_rr4 ncind2 930099323 4 0.877 1.000

mymsgs_rr4 ncind2 946099380 4 0.945 0.993

Reference Manual: Building Blocks
Transact-SQL Functions

Example 7

Selects derived statistics for all allpages-locked tables in the current database:

2> select convert (varchar (10), object name (id)) as name

3> (select convert (varchar (20), i.name) from sysindexes i

4> where i.id = p.id and i.indid = p.indid),

5> convert (varchar (30), name) as ptnname, indid,

6> convert (decimal (5, 3), derived stat(id, indid, partitionid, 'sput')) as
'sput',

7> convert (decimal (5, 3), derived stat(id, indid, partitionid, 'dpcr')) as
'dpcr’',

8> convert (decimal (5, 3), derived stat(id, indid, partitionid, 'drcr')) as
'drcr',

9> convert (decimal (5, 3), derived stat(id, indid, partitionid, 'lgio')) as
'lgio’

10> from syspartitions p

11> where lockscheme (id) = "allpages"

12> and (select o.type from sysobjects o where o.id = p.id) = 'U'

name ptnname indid sput dpcr

drcr lgio

stores stores stores 18096074 0 0.276 1.000
1.000 1.000

discounts discounts discounts 50096188 0 0.075 1.000
1.000 1.000

au_pix au pix au pix 82096302 0 0.000 1.000
1.000 1.000

au pix tau pix tau pix 82096302 255 NULL NULL NULL
NULL

blurbs blurbs blurbs 114096416 0 0.055 1.000
1.000 1.000

blurbs tblurbs tblurbs 114096416 255 NULL NULL NULL
NULL

tlapl tlapl tlapl 1497053338 0 0.095 1.000
1.000 1.000

tlapl tlapl tlapl 1513053395 0 0.082 1.000
1.000 1.000

tlapl tlapl tlapl 1529053452 0 0.095 1.000
1.000 1.000

tlapl tlapl ncind tlapl ncind 1545053509 2 0.149 0.000
1.000 1.000

tlapl tlapl ncind local tlapl ncind local 1561053566 3 0.066 0.000
1.000 1.000

tlapl tlapl ncind local tlapl ncind local 1577053623 3 0.057 0.000
1.000 1.000

tlapl tlapl ncind local tlapl ncind local 1593053680 3 0.066 0.000
1.000 1.000

authors auidind auidind 1941578924 1 0.966 0.000
1.000 1.000

authors aunmind aunmind 1941578924 2 0.303 0.000
1.000 1.000

publishers pubind pubind 1973579038 1 0.059 0.000
1.000 1.000

roysched roysched roysched 2005579152 0 0.324 1.000
1.000 1.000

roysched titleidind titleidind 2005579152 2 0.777 1.000
0.941 1.000

sales salesind salesind 2037579266 1 0.444 0.000
1.000 1.000

salesdetal salesdetail salesdetail 2069579380 0 0.614 1.000
1.000 1.000

salesdetai titleidind titleidind 2069579380 2 0.518 1.000

0.752 1.000

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 173

salesdetai salesdetailind salesdetailind 2069579380 3 0.794 1.000
0.726 1.000

titleautho taind taind 2101579494 1 0.397 0.000
1.000 1.000
titleautho auidind auidind 2101579494 2 0.285 0.000
1.000 1.000
titleautho titleidind titleidind 2101579494 3 0.223 0.000
1.000 1.000
titles titleidind titleidind 2133579608 1 0.895 1.000
1.000 1.000
titles titleind titleind 2133579608 2 0.402 1.000

0.688 1.000
(27 rows affected)

Usage

® derived stat returnsadouble precision value.

® The values returned by derived stat match the values presented by the optdiag utility.

e |f the specified object or index does not exist, derived stat returns NULL.

e Specifying an invalid statistic type results in an error message.

® Using the optional <partition name>or <partition_ id> reports the requested statistic for the target
partition; otherwise, derived_stat reports the statistic for the entire object.

® |nstead of consuming resources, derived stat discards the descriptor for an object that is not already in
the cache.
e |fyou provide:
o Fourarguments — derived_stat uses the third argument as the partition, and returns derived
statistics on the fourth argument.
o Three arguments — derived stat assumes you did not specify a partition, and returns derived
statistic specified by the third argument.

See also:

® Access Methods and Query Costing for Single Tables and Statistics Tables and Displaying Statistics with
optdiag in Performance and Tuning Guide
® optdiag in Utility Guide

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

The permission checks for derived stat differ based on your granular permissions settings.

Reference Manual: Building Blocks
174 PUBLIC Transact-SQL Functions

Granular Description

Permissions
Enabled With granular permissions enabled, you must be the table owner or have manage
database permission to execute derived stat
Disabled With granular permissions disabled, you must be the table owner or be a user with
sa_roletoexecute derived stat.
Auditing

You can enable func_obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event = Command or access audited Informationinextrainfo:

func_obj_access 86 derived stat ® Roles - Current active roles
® Keywords or options — DERIVED STAT
® Previous value — NULL
® Current value — NULL
e Other information — NULL
e Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.53 difference

Returns the difference between two soundex values.

Syntax

difference (<exprl>, <exprz>)

Parameters

<exprl>

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 175

is a character-type column name, variable, or constant expression of char, varchar,

nchar, nvarchar, or unichar type

<expr2>
is another character-type column name, variable, or constant expression of char,
varchar, nchar, nvarchar, or unichar type.
Examples
Example 1

Returns the difference between "smithers" and "smothers":

select difference ("smithers", "smothers")

Example 2

Returns the difference between "smothers" and "brothers":

select difference ("smothers", "brothers")

Usage

® difference, astring function, returns an integer representing the difference between two soundex
values.

® The difference function compares two strings and evaluates the similarity between them, returning a
value from O to 4. The best match is 4.
The string values must be composed of a contiguous sequence of valid single- or double-byte roman
letters.

e |[f<exprl>or<expr2>is NULL, returns NULL.
e |[fyou give a varchar expression is given as one parameter and a unichar expression as the other, the
varchar expression is implicitly converted to unichar (with possible truncation).

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
176 PUBLIC Transact-SQL Functions

Permissions

Any user can execute difference.

Related Information

soundex [page 375]

3.54 dol_downgrade_check

Returns the number of data-only-locked (DOL) tables in the specified database that contain variable-length
columns wider than 8191 bytes. Returns O when there are no wide, variable-length columns and you can safely
perform the downgrade.

Syntax

dol downgrade check('<database name>', <target version>)

Parameters

<database name>

name or ID of the database you are checking. <database name> may be a qualified
object name (for example, mydb.dbo.mytable).

<target_version>

integer version of SAP ASE to which you are downgrading (for example, version 15.0.3 is
1503).

Examples

Example 1

Checks DOL tables in the pubs2 database for wide, variable-length columns so you can downgrade to
version 15.5:

select dol downgrade check('pubs2', 1550)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 177

Usage

® Returns zero (success) if the target version is SAP ASE version 15.7 or later, indicating that no work is
necessary.

e |f you specify a qualified table, but do not indicate the database to which it belongs,
dol downgrade check checks the current database.

Permissions

The permission checks for dol _downgrade check differ based on your granular permissions settings.

Granular Description

Permissions
Enabled With granular permissions enabled, you must be the database owner or have manage

database permission to execute dol downgrade check.

Disabled With granular permissions disabled, you must be the database owner or be a user with

sa_roletoexecute dol downgrade check.

Auditing

You can enable func_dbaccess auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func _dbaccess 86 dol downgrade check ® Roles - Current active roles
e Keywords or options —
DOL RDOWNGRADE CHECK
® Previous value — NULL
e Current value — NULL
e QOther information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Reference Manual: Building Blocks
178 PUBLIC Transact-SQL Functions

3.55 exp

Calculates the value that results from raising a constant to the specified power, and returns the exponential
value of the specified value.

Syntax

exp (<approx numeric>)

Parameters

<approx_numeric>

is any approximate numeric (float, real, or double precision)columnname,
variable, or constant expression.
Examples

Example 1

Returns the exponential value of 3:

select exp(3)

20.085537

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 179

Permissions

Any user can execute exp.

Related Information
log [page 241]

logl0 [page 242]
power [page 297]

3.56 floor

Returns the largest integer that is less than or equal to the specified value.

Syntax

floor (K<numeric>)

Parameters

<numeric>

is any exact numeric (numeric, dec, decimal, tinyint, smallint, int, orbigint),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

Examples

Example 1

Returns the largest integer that is less than or equal to 123:

select floor (123)

Reference Manual: Building Blocks
180 PUBLIC Transact-SQL Functions

Example 2

Returns the largest integer that is less than or equal to the 123.45:

select floor (123.45)

Example 3
Returns the largest integer that is less than or equal to 1.2345E2:

select floor (1.2345E2)

123.000000
Example 4

Returns the largest integer that is less than or equal to -123.45:

select floor (-123.45)

Example 5

Returns the largest integer that is less than or equal to -1.2345E2:

select floor (-1.2345E2)

-124.000000
Example 6

Returns the largest integer that is less than or equal to $123.45:

select floor($123.45)

Usage

For numeric and decimal expressions, the results have a precision equal to that of the expression and a scale of

0.

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

181

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute floor.

Related Information

abs [page 59]
ceiling [page 89]
round [page 327]
sign [page 364]

3.57 generate_sqlscript

Returns SAP ASE stored procedures, triggers, and views that to migrate the objects into HANA SQL script
procedures.

Syntax

To migrate a stored procedure, trigger, or view:
generate sqglscript (<object name>[, ‘verbose’])
To migrate a stored procedure, trigger, or view for an ASE database:

generate sqglscript (<database name>[, [‘verbose’][| proc][| view][|tigger]']))

Parameters

<object_name>
is the name of the stored procedure, trigger, or view.

<database name>

Reference Manual: Building Blocks
182 PUBLIC Transact-SQL Functions

is the name of the database from which you want to migrate stored procedures,
triggers, and views. Using this option allows you to migrate all of the objects in your

specified type.
verbose

specifies verbose mode.
proc

specifies all stored procedures for the <database name>.
view

specifies all views for the <database name>
trigger

specifies all triggers for the <database name>.
Examples

Migrates single procedure

This example migrates a single stored procedure, called myproc:

select generate sqglscript (‘myproc’, ‘verbose’)
Migrates views

This example migrates all views for the database mydb:

select generate sqglscript(‘mydb’, ‘verbose|view’)
Migrates procedures and views

This example migrates all stored procedures and views for the database mydb:

select generate sqglscript (‘mydb’, ‘verbose|proc|view’)

3.58 get_appcontext

Returns the value of the attribute in a specified context. get appcontext is provided by the Application
Context Facility (ACF).

Syntax

get appcontext (“<context name>”, “<attribute name>")

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

183

Parameters

<context_name>

is a row specifying an application context name, saved as datatype char (30).

<attribute name>

is a row specifying an application context attribute name, saved as char (30).

Examples

Example 1

Shows VALUEL returned for ATTR1.

select get appcontext ("CONTEXT1", "ATTR1")

VALUE1

ATTR1 does not exist in CONTEXT2:
select get appcontext ("CONTEXT2", "ATTR1")
Example 2

Shows the result when a user without appropriate permissions attempts to get the application context.

select get appcontext ("CONTEXT1", "ATTR2", "VALUEL")

Select permission denied on built-in get appcontext, database dbid

Usage

e This function returns O for success and -1 for failure.
e |f the attribute you require does not exist in the application context, get _appcontext returns NULL.

® get appcontext saves attributes as char datatypes. If you are creating an access rule that compares the
attribute value to other datatypes, the rule should convert the char data to the appropriate datatype.

e All arguments for this function are required.
e For more information on the ACF, see Row-Level Access Control in System Administration Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
184 PUBLIC Transact-SQL Functions

Permissions

The permission checks for get _appcontext differ based on your granular permissions settings.

Granular Description
Permissions

Enabled With granular permissions enabled, you must have select permission on

get appcontext to execute the function.

Disabled With granular permissions disabled, you must have select permission on

get appcontext or be a user with sa_role to execute the function.

Related Information

get_appcontext [page 183]
list_appcontext [page 234]
rm_appcontext [page 321]
set_appcontext [page 335]

3.59 get_internal_date

Returns the current date and time from the internal clock maintained by the SAP ASE server.

Syntax

get internal date

Examples

Example 1

The system clock is synchronized with the SAP ASE internal clock. Current system date: January 20, 2007,
5:04AM:

select get internal date()

Jan 20 2007 5:04AM

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 185

Example 2

The system clock is not synchronized with the SAP ASE internal clock. Current system date: August 27,
2007, 1:08AM.

select get internal date()

Aug 27 2007 1:07AM

Usage

get internal date may return a different value than getdate. getdate returns the system clock value,
while get _internal date returns the value of the server’s internal clock.

At startup, the SAP ASE server initializes its internal clock with the current value of the operating system clock,
and increments it based on regular updates from the operating system.

The SAP ASE server periodically synchronizes the internal clock with the operating system clock. The two
typically differ by a maximum of one minute.

The SAP ASE server uses the internal clock value to maintain the date of object creation, timestamps for
transaction log records, and so on. To retrieve such values, use get _internal date rather than getdate.

Permissions

Any user can execute get _internal date

Related Information

getdate [page 186]

3.60 getdate

Returns the current system date and time.

Syntax

getdate ()

Reference Manual: Building Blocks
186 PUBLIC Transact-SQL Functions

Examples

Example 1

Assumes a current date of November 25, 1995, 10:32 a.m.:

select getdate()

Nov 25 1995 10:32AM
Example 2

Assumes a current date of November:

select datepart (month, getdate())

11
Example 3

Assumes a current date of November:

select datename (month, getdate())

November

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute getdate.

Related Information

Date and Time Datatypes [page 19]
dateadd [page 138]

datediff [page 142]

datename [page 145]

datepart [page 148]

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

187

3.61 getutcdate

Returns a date and time where the value is in Universal Coordinated Time (UTC). getutcdate is calculated
each time a row is inserted or selected.

Syntax

getutcdate ()

Examples

Example 1

Returns a date and time in Universal Coordinated Time:

insert tl (<cl>, <c2>, <c3>) select cl, getutcdate(),
getdate () from t2

Permissions

Any user can execute getutcdate.

Related Information

biginttohex [page 78]
convert [page 110]

Reference Manual: Building Blocks
188 PUBLIC Transact-SQL Functions

3.62 hadr_mode

Displays the mode of the HADR system.

Syntax

hadr mode (<Q@@hadr mode return value>)

Parameters

<@@hadr_mode_return_value>

the HADR mode that corresponds with the <@@hadr mode> return value.

Returns

hadr mode return values are:

® NoHADR — HADR is disabled.

e primary— HADRisenabled. Thisis a primary server.

® standby — HADR is enabled. This is a standby server

® Unreachable — HADRIs enabled, but the server is unreachable.

® sStarting—HADR s enabled, and the server is ready for initialization.

Examples

Example 1

Displays the current mode of the HADR system:

select hadr mode ()

Starting
Example 2

Displays the HADR mode that corresponds to the <@@hadr mode> return value of -1:

select hadr mode (-1)

No HADR

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

189

Usage

Permissions

Any user can execute hadr mode.

Auditing

You can enable func_ dbaccess auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event = Command or access audited Information in extrainfo:

func_dbaccess 86 hadr mode ® Roles - Current active roles
® Keywords or options — HADR_MODE
® Previous value — NULL
® Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.63 hadr_state

Displays the state of the HADR system

Syntax

hadr_state (<@@hadr_state_ return value>)

Parameters

<@@hadr_state_return_value>

the HADR state that corresponds with the <@@hadr state> return value.

Reference Manual: Building Blocks
190 PUBLIC Transact-SQL Functions

Returns

hadr_ state returnvalues are:

® Unknown — HADR s in an unknown state.
® Active — Primary server allows transaction processing from user applications.
® Tnactive — Serverisinactive, and does not allow transaction processing from user applications

® Deactivating— The serveris changing from the active to the inactive state, and the log is being drained

Examples

Example 1

Displays the current state of the HADR system:

select hadr state()

Inactive
Example 2

Displays the HADR state that corresponds to the <@@hadr state> returnvalue of 1:

select hadr state (1)

Active

Usage

Permissions

Any user can execute hadr_state.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 191

Auditing

You can enable func_ dbaccess auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event = Command or access audited Information in extrainfo:

func_dbaccess 86 hadr state ® Roles - Current active roles
® Keywords or options — HADR_STATE
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.64 has_role

Returns information about whether an invoking user has been granted, and has activated, the specified role.

Syntax
has role ("<role name>", <option>)
Parameters

<role_name>
is the name of a system or user-defined role.
<option>

allows you to limit the scope of the information returned. Currently, the only option
supported is 1, which suppresses auditing.

Reference Manual: Building Blocks
192 PUBLIC Transact-SQL Functions

Examples

Example 1

Creates a procedure to check if the user is a System Administrator:

create procedure sa check as
if (has role("sa role", 0) > 0)

begin
print "You are a System Administrator."
return (1)
end
Example 2

Checks that the user has been granted the System Security Officer role:

select has role("sso role", 1)
Example 3

Checks that the user has been granted the Operator role:

select has role("oper role", 1)

Usage

® has role functions the same way proc role does. In SAP ASE versions 15.0 and later, we recommend
that you use has_roleinstead of proc role. You need not, however, convert all of your existing uses of

proc_roletohas role
® has rolereturns Oif the user has:
o Not been granted the specified role
o Not been granted a role which contains the specified role
o Been granted, but has not activated, the specified role
® has rolereturns:
o 1-ifthe invoking user has been granted, and has activated, the specified role.
o 2 —iftheinvoking user has a currently active role, which contains the specified role.

See also:

® alter role,create role,drop role, grant, revoke, set in Reference Manual: Commands
® Transact-SQL Users Guide

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

193

Permissions

Any user can execute has_role.

Related Information

mut_excl_roles [page 262]
role_contain [page 323]
role_id [page 324]
role_name [page 326]
show_role [page 360]

3.65 hash

Produces a fixed-length hash value expression.

Syntax

hash (<expression> , [<algorithm>])

Parameters

<expression>
is the value to be hashed. This can be a column name, variable, constant expression, or
any combination of these that evaluates to a single value. It cannot be image, text,
unitext, or off-row Java datatypes. Expression is usually a column name. If expression
is a character constant, it must be enclosed in quotes.

<algorithm>

is the algorithm used to produce the hash value. A character literal (not a variable or
column name) that can take the values of either md5 or shal, 2 (meaning md5 binary),
or 3 (meaning shal binary). If omitted, md5 is used.

Reference Manual: Building Blocks
194 PUBLIC Transact-SQL Functions

Algorithm Results in

hash (<expression>, A varchar 32-byte string.

A d5 4
") md5 (Message Digest Algorithm 5) is the cryptographic hash

function with a 128-bit hash value.

hash (<expression>) Avarchar 32-byte string
hash (<expression>, A varchar 40-byte string
‘shal’)

shal (Secure Hash Algorithm) is the cryptographic hash func-
tion with a 160-bit hash value.

hash (<expression>, A varbinary 16-byte value (using the md5 algorithm)
2)

hash (<expression>, Avarbinary 20-byte value (using the shal algorithm)
3)

Examples

Example 1

This example shows how a seal is implemented. The existence of a table called “atable™ and with columns

id, sensitive fieldand tamper seal.

update atable set tamper seal=hash (convert (varchar (30),
id) + sensitive field+@salt, 'shal')

Usage

When specified as a character literal, <algorithm> is not case-sensitive—"md5" “Md5" and “MD5" are
equivalent. However, if <expression> is specified as a character datatype then the value is case sensitive.
TIME," and “time” produce different hash values.

"o

“Time,

If <algorithm>is a character literal, the result is a varchar string. For “md5” this is a 32-byte string
containing the hexadecimal representation of the 128-bit result of the hash calculation. For “sha1” this is a 40-
byte string containing the hexadecimal representation of the 160-bit result of the hash calculation.

If <algorithm>is aninteger literal, the result is a varbinary value. For 2, this is a 16-byte value containing
the 128-bit result of the hash calculation. For 3, this is a 20-byte value containing the 160-bit result of the hash
calculation.

i Note

Trailing null values are trimmed by the SAP ASE server when inserted into varbinary columns.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 195

Individual bytes that form <expression> are fed into the hash algorithm in the order they appear in memory.
For many datatypes order is significant. For example, the binary representation of the 4-byte INT value 1 will be
0x00, 0x00, 0x00, 0x01 on MSB-first (big-endian) platforms and 0x01, 0x00, 0x00, Ox00 on LSB-first (little-
endian) platforms. Because the stream of bytes is different between platforms, the hash value is different as
well. Use hashbytes function to achieve platform independent hash value.

i Note

The hash algorithms MD5 and SHAL1 are no longer considered entirely secure by the cryptographic
community. As for any such algorithm, you should be aware of the risks of using MD5 or SHAL in a security-
critical context.

Standards

SQL92- and SQL99-compliant

Permissions

Any user can execute hash.

Related Information

hashbytes [page 196]

3.66 hashbytes

Produces a fixed-length, hash value expression.

Syntax

hashbytes (<algorithm>, <expression>[, <expression><...>] [, using <options>])

Reference Manual: Building Blocks
196 PUBLIC Transact-SQL Functions

Parameters

<expression>[, <expression>...]

<algorithm>

Examples

Example 1

Seals each row of a table against tampering. This example assumes the existence of a user table called

is the value to be hashed. This value can be a column name, variable, constant
expression, or a combination of these that produces a single value. It cannot be image,
text, unitext, or off-row Java datatypes.

is the algorithm used to produce the hash value. A character literal (not a variable or a
column name) that can take the values “md5”, “sha”, “shal”, or “ptn"

e Md5 (Message Digest Algorithm 5) — is the cryptographic hash algorithm with a 128
bit hash value. hashbytes ('md5', <expression>[,...]) resultsina
varbinary 16-byte value.

® Sha-Shal (Secure Hash Algorithm) — is the cryptographic hash algorithm with a
160-bit hash value. hashbytes ('shal', <expression>[,...]) resultsina
varbinary 20-byte value.

e ptn - The partition hash algorithm with 32-bit hash value. The <using> clause is
ignored for the ‘ptn’ algorithm. hashbytes (<'ptn'>, <expression>[,...])
results inan unsigned int 4-byte value.

® using - Orders bytes for platform independence. The optional using clause can
precede the following option strings:

o 1sb - all byte-order dependent data is normalized to little-endian byte-order
before being hashed.

© msb — all byte-order dependent data is normalized to big-endian byte-order
before being hashed.

© unicode - character datais normalized to unicode (UTF-16) before being
hashed.

i Note

A UTF - 16 string is similar to an array of short integers. Because it is byte-
order dependent, use 1sb or msb in conjunction with UNICODE for platform
independence.

© unicode lsb —acombinationof unicode and 1sb.

© unicode msb —acombination of unicode and msb.

“xtable” and coll, col2, col3 and tamper seal.

update xtable set tamper seal=hashbytes('shal', coll,
col2, cold4, @salt)

Reference Manual: Building Blocks

Transact-SQL Functions

PUBLIC

197

declare @nparts unsigned int

select @nparts= 5

select hashbytes('ptn', coll, col2, col3) % nparts from xtable
Example 2

Shows how col1, col2, and col3 are used to partition rows into five partitions.

alter table xtable partition by hash(coll, col2, col3) 5

Usage

The algorithm parameter is not case-sensitive; “md>b,” “Md5” and “MD5" are all equivalent. However, if the
<expression> is specified as a character datatype, the value is case sensitive. “Time,” “TIME,” and “time”
produce different hash values.

i Note

Trailing null values are trimmed by the SAP ASE server when inserting into varbinary columns.

In the absence of a using clause, the bytes that form <expression >are fed into the hash algorithm in the
order they appear in memory. For many datatypes, order is significant. For example, the binary representation
of the 4-byte INT value 1 will be 0x00, 0x00, 0x00, 0x01, on MSB-first (big-endian) platforms and 0x01, 0x00,
0x00, 0x00 on LSB-first (little-endian) platforms. Because the stream of bytes is different for different
platforms, the hash value is different as well.

With the using clause, the bytes that form <expression> can be fed into the hashing algorithm in a platform-
independent manner. The using clause can also be used to transform character data into Unicode so that the
hash value becomes independent of the server's character configuration.

i Note

The hash algorithms MD5 and SHA1 are no longer considered entirely secure by the cryptographic
community. Be aware of the risks of using MD5 or SHA1 in a security-critical context.

Standards

SQL92- and SQL99-compliant

Permissions

Any user can execute hashbyte.

Reference Manual: Building Blocks
198 PUBLIC Transact-SQL Functions

Related Information

hash [page 194]

3.67 hextobigint

Returns the platform-independent bigint value equivalent of a hexadecimal string

Syntax

hextobigint (<hexadecimal string>)

Parameters

<hexadecimal_string>

is the hexadecimal value to be converted to an big integer; must be a character-type
column, variable name, or a valid hexadecimal string, with or without a “Ox" prefix,
enclosed in quotes.

Examples

Example 1

The following example converts the hexadecimal string Ox7fffffffffffffff to a big integer.

1> select hextobigint ("Ox7fffffffffffffff")
2> go

9223372036854775807

Usage

Use the hextobigint function for platform-independent conversions of hexadecimal data to integers.
hextobigint accepts a valid hexadecimal string, with or without a “Ox” prefix, enclosed in quotes, or the
name of a character-type column or variable.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

199

hextobigint returns the bigint equivalent of the hexadecimal string. The function always returns the same
bigint equivalent for a given hexadecimal string, regardless of the platform on which it is executed.

Related Information

biginttohex [page 78]
convert [page 110]
inttohex [page 215]
hextoint [page 200]

3.68 hextoint

Returns the platform-independent integer equivalent of a hexadecimal string.

Syntax

hextoint (<hexadecimal string>)

Parameters

<hexadecimal_string>

is the hexadecimal value to be converted to an integer; must be a character-type
column, variable name, or a valid hexadecimal string, with or without a “Ox" prefix,
enclosed in quotes.

Examples

Example 1

Returns the integer equivalent of the hexadecimal string “Ox00000100". The result is always 256,
regardless of the platform on which it is executed:

select hextoint ("0x00000100™)

Reference Manual: Building Blocks
200 PUBLIC Transact-SQL Functions

Usage

Use the hextoint function for platform-independent conversions of hexadecimal data to integers. hextoint
accepts a valid hexadecimal string, with or without a “Ox" prefix, enclosed in quotes, or the name of a
character-type column or variable.

hextoint returns the integer equivalent of the hexadecimal string. The function always returns the same
integer equivalent for a given hexadecimal string, regardless of the platform on which it is executed.

See the Transact-SQL Guide for more information about datatype conversion.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute hextoint.

Related Information

biginttohex [page 78]
convert [page 110]
inttohex [page 215]

3.69 host_id

Returns the client computer’s operating system process ID for the current SAP ASE client (not the server
process).

Syntax

host id()

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 201

Examples

Example 1

The name of the client computer, “ephemeris” and the process ID on the computer, “ephemeris” for the
SAP ASE client process, 2309:

select host name (), host id()

ephemeris 2309

The following is the process information, gathered using the UNIX ps command, from the computer
“ephemeris” showing that the client in this example is “isgl” and its process ID is 2309:

2309 pts/2 S 0:00 /work/asl25/0CS-12 5/bin/isql

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute host_id.

Related Information

host_name [page 203]

Reference Manual: Building Blocks
202 PUBLIC Transact-SQL Functions

3.70 host_name

Displays the current host computer name of the client process (not the server process).

Syntax

host name ()

Examples

Example 1

Displays the current host computer name:

select host name ()

violet

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute host_name.

Related Information

host_id [page 201]

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

203

3.71 identity_burn_max

Tracks the identity burn max value for a given table. This function returns only the value; it does not perform an
update.

Syntax

identity burn max (<table name>)

Parameters

<table name>

is the name of the table selected.

Examples

Example 1

Returns the identity burn max value of t1:

select identity burn max("tl")

Permissions

The permission checks for identity burn_ max differ based on your granular permissions settings.

Granular Description
Permissions

Enabled With granular permissions enabled, you must be the table owner or have manage

database permissionto execute identity burn max.

Disabled With granular permissions disabled, you must be the database owner or table owner, or

be auser with sa_role toexecute identity burn max.

Reference Manual: Building Blocks
204 PUBLIC Transact-SQL Functions

Auditing

You can enable func_obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Information in extrainfo:

func_obj access 86 identity burn max ® Roles - Current active roles
® Keywords or options — IDENTITY BURN MAX
® Previous value — NULL
® Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.72 imrs_rowinfo

Provides row details such as row length, number of versions, and several memory usage metrics.

Syntax

imrs rowinfo (<column name>, '<tag>')

Parameters

<column_name>
Name of the column.
<tag>

Details about the specified column. Options include:

® status — Status of the row version

® |og record size — amount of memory required to log this version of the row.

® row length —actual row length of data row in page-oriented row format.

® number of versions — number of IMRS versions for a row, regardless of type.
® number of committed versions — notsupported for this release.

® number of uncommitted versions —mustbe lessthanorequaltol

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 205

® nmemory required for row—amountof memory required for the row metadata
structures and for the latest-committed version of the row.

® memory required for version —amountof memory required just for the
latest-committed version of the row.

® nmemusage for row —amountof memory actually used in excess of what was
required. This accounts for kernel overheads due to rounding and such. for row
indicates the amount of memory required for the row metadata structures plus the
latest-committed version of the row.

® nmemusage for version —amountof memory required for the latest-committed
version of the row

® nmemusage for row with overhead —amountof memory required just for the
latest-committed version of the row in addition to the kernel fragment memory
overhead, and any rounding overheads already included in memusage metric.

® nmemusage for version with overhead - memory usage for this version of
the row, including kernel overhead.

® nmemusage for all versions —amount of memory required for all committed
and uncommitted versions of the row

® npemusage for all versions with overhead - amount of memory required
for all committed and uncommitted versions of the row in addition to the kernel
fragment memory overhead, and any rounding overheads already included in
memusage metric

® memusage for all uncommitted versions — notsupported for this release

® memusage for all uncommitted versions with overhead - not
supported for this release.

® npemusage for all committed versions —amount of memory required for all
committed versions of the row. This metric is the same as the value for memusage
for all versions when no active transactions are updating the row.

® memusage for all committed versions with overhead - amount of
memory required for all committed versions of the row in addition to the kernel
fragment memory overhead, and any rounding overheads already included in
memusage metric. This metric is the same as the value for memusage for all
versions with overhead when no active transactions are updating the row.

Examples

Example 1

Selects the metrics for row length and memusage for rowfromthe t2 imrs table:

select cl, rowlen = imrs rowinfo(c2, "row length"), memoryusg =
imrs rowinfo (c2, "memusage for row")

from t2 imrs

cl rowlen memoryusg

Reference Manual: Building Blocks
206 PUBLIC Transact-SQL Functions

Usage

To obtain an aggregate metric for all rows in the IMRS (for example, number of versions, memusage for
row with overhead, and soon), use the suM aggregate on the individual metric across all rows in the IMRS.

3.73 index_col

Displays the name of the indexed column in the specified table or view to a maximum of 255 bytes in length.

Syntax

index col (<object name>, <index id>, <key #>[, <user_ id>])

Parameters

<object_name>

is the name of a table or view. The name can be fully qualified (that is, it can include the
database and owner name). It must be enclosed in quotes.

<index_id>
is the number of <object name>'sindex. This number is the same as the value of
sysindexes.indid

<key_#>

is a key in the index. This value is between 1 and sysindexes. keycnt for a clustered
index and between 1 and sysindexes. keycnt+1 for a nonclustered index.

<user_id>

is the owner of <object name>. If you do not specify <user id>, it defaults to the
caller’s user ID.

Examples

Example 1

Finds the names of the keys in the clustered index on table t4:

declare @keycnt integer
select @keycnt = keycnt from sysindexes
where id = object id("t4")

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 207

and indid = 1

while @keycnt > 0

begin
select index col("t4", 1, Rkeycnt)
select @keycnt = @keycnt - 1

end

Usage

index col returns NULLif <object name> is not a table or view name.

See also:

e Transact-SQL Users Guide
® sp helpindex in Reference Manual: Procedures

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute index col.

Auditing

You can enable func _obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func_obj access 86 index_col ® Roles — Current active roles
® Keywords or options — INDEX COL
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Reference Manual: Building Blocks
208 PUBLIC Transact-SQL Functions

Related Information

object_id [page 273]

3.74 index_colorder

Returns the column order.

Syntax

index colorder (<object name>, <index id>, <key #>[, <user id>])

Parameters

<object_name>

is the name of a table or view. The name can be fully qualified (that is, it can include the
database and owner name). It must be enclosed in quotes.

<index_id>
is the number of <object name>'sindex. This number is the same as the value of
sysindexes.indid

<key_#>

is a key in the index. Valid values are 1 and the number of keys in the index. The number
of keysis stored in sysindexes.keycnt

<user_id>

is the owner of <object name>. If you do not specify <user id>, it defaults to the
caller's user ID.

Examples

Example 1

Returns “DESC" because the salesindindex on the sales table is in descending order:

select name, index colorder("sales", indid, 2)
from sysindexes
where id = object id ("sales")

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

209

and indid > 0

salesind DESC

Usage
index_colorder returns:
e “ASC” for columns in ascending order

e “DESC" for columns in descending order.
® NULL if <object name>isnotatable name orif <key #> isnota valid key number.

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute index colorder.

Auditing

You can enable func _obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func_obj access 86 index_colorder ® Roles — Current active roles
® Keywords or options — INDEX COLORDER
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Reference Manual: Building Blocks
210 PUBLIC Transact-SQL Functions

3.75 index_name

Returns an index name, when you provide the index ID, the database ID, and the object on which the index is
defined.

Syntax

index name (<dbid>, <objid>, <indid>)

Parameters

<dbid>

is the ID of the database on which the index is defined.

<objid>
is the ID of the table (in the specified database) on which the index is defined.
<indid>
is the ID of the index for which you want a name.
Examples
Example 1

[llustrates the normal usage of this function.

select index name (db_id("testdb"),
object id("testdb...tab apl"),1)

Example 2

[llustrates the output if the database ID is NULL and you use the current database ID.

select index name (NULL, object id("testdb..tab apl"),1)

Example 3

Displays the table name if the index ID is O, and the database ID and object ID are valid.

select index name (db_ id("testdb"),
object id("testdb..tab apl"),1)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 211

Usage

index name:

® Uses the current database ID, if you pass a NULL value in the <dbid> parameter
® Returns NULL if you pass a NULL value in the <dbid> parameter.

e Returns the object name, if the index ID is O, and you pass valid inputs for the object ID and the database
ID.

Permissions

Any user can execute index name.

Auditing

You can enable func obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event = Command or access audited Informationinextrainfo:

func_obj access 86 index_name ® Roles — Current active roles
® Keywords or options — INDEX NAME
® Previous value — NULL
® Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Related Information

db_id [page 156]
object_id [page 273]

Reference Manual: Building Blocks
212 PUBLIC Transact-SQL Functions

3.76 instance_id

(Cluster environments only) Returns the ID of the named instance, or the instance from which it is issued if you
do not provide a value for <name>.

Syntax

instance id([<name>])

Parameters

<name>

name of the instance for which you are searching the ID.

Examples

Example 1

Returns the ID of the local instance:

select instance id()
Example 2

Returns the ID of the instance named “myserverl™:

select instance id(myserverl)

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute instance id.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 213

3.77 instance_name

(Cluster environments only) Returns the name for the SAP ASE with an ID that you provide, or the name of the
SAP ASE from which it is issued if you do not provide a value for <id>.

Syntax

instance name ([<id>])

Parameters

<id>

is the ID of the SAP ASE with the name you are researching.

Examples

Example 1

Returns the name of the instance with an ID of 12:

select instance name (12)

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute instance name.

Reference Manual: Building Blocks
214 PUBLIC Transact-SQL Functions

3.78 inttohex

Returns the platform-independent hexadecimal equivalent of the specified integer, without a “Ox” prefix.

Syntax

inttohex (<integer expression>)

Parameters

<integer_ expression>

is the integer value to be converted to a hexadecimal string.

Examples

Example 1

Returns the hexadecimal equivalent of 10:

select inttohex (10)

0000000A

Usage

Use the inttohex function for platform-independent conversions of integers to hexadecimal strings.
inttohex accepts any expression that evaluates to an integer. It always returns the same hexadecimal
equivalent for a given expression, regardless of the platform on which it is executed.

See the Transact-SQL Guide for more information about datatype conversion..

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 215

Permissions

Any user can execute inttohex.

Related Information

convert [page 110]
hextobigint [page 199]
hextoint [page 200]

3.79 isdate

Determines whether an input expression is a valid datetime value.

Syntax

isdate (<character expression>)

Parameters

<character_expression>

is a character-type variable, constant expression, or column name.

Examples

Example 1

Determines if the string 12/21/2005 is a valid datetime value:

select isdate('12/21/2005")
Example 2

Determinesif stor idanddate inthe sales table are valid datetime values:

select isdate(stor id), isdate(date) from sales

Reference Manual: Building Blocks
216 PUBLIC Transact-SQL Functions

store_idisnotavalid datetime value, but date is.

Usage

Returns:

e 1-iftheexpressionisavalid datetime value
e (O -ifitis not. Returns O for NULL input.

3.80 is_quiesced

Indicates whether a database is in quiesce database mode. is _quiescedreturns1if the database is
quiesced and O if it is not.

Syntax

is quiesced (<dbid>)

Parameters

<dbid>
is the database ID of the database.

Returns

is_quiescedreturns avalue of 1 when the database has been quiesced using prepare database ...

with quiesce.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 217

Examples

Example 1

Uses the test database, which has a database ID of 4, and which is not quiesced:

1> select is quiesced (4)
2> go

(1 row affected)
Example 2

Uses the test database after running quiesce database to suspend activity:

1> quiesce database tst hold test
2> go

1> select is quiesced (4)

2> go

(1 row affected)
Example 3

Uses the test database after resuming activity using quiesce database:

1> quiesce database tst release
2> go

1> select is quiesced(4)

2> go

(1 row affected)
Example 4

Executes a select statement with is quiesced using an invalid database ID:

1>select is quiesced(-5)
2> go

NULL

(1 row affected)

Usage

is quiesced:

® Has no default values. You see an error if you execute is_quiesced without specifying a database.

Reference Manual: Building Blocks
218 PUBLIC Transact-SQL Functions

e Returns NULL if you specify a database ID that does not exist.

See also quiesce database in Reference Manual: Commands.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute is quiesced.

Auditing

You can enable func_ dbaccess auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event = Command or access audited Information in extrainfo:

func_dbaccess 86 is quiesced ® Roles - Current active roles
® Keywords or options — IS _QUIESCED
® Previous value — NULL
® Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.81 is_sec_service_on

Determines whether a particular security service is active during the session.

Syntax

is sec service on(<security service nm>)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 219

Parameters

<security service nm>

is the name of the security service.

Examples

Example 1

Indicates whether unifiedlogin is active:

select is sec service on("unifiedlogin")

Usage

e Returns 1if the service is enabled; otherwise, returns O.

e To find valid names of security services, execute:
select * from syssecmechs
The result might look something like:

sec_mech name available service

dce unifiedlogin
dce mutualauth

dce delegation

dce integrity

dce confidentiality
dce detectreplay
dce detectseq

The available service column displays the security services that are supported by the SAP ASE

server.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute is_sec_service on.

220 PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

Related Information

show_sec_services [page 361]

3.82 is_singleusermode

Determines whether the SAP ASE server is running in single-user mode.

Syntax

is singleusermode ()

Examples

Example 1

Shows a server running in single-user mode:

select is_singleusermode ()

Usage

Returns:

e (- ifthe SAP ASE server is not running in single-user mode.

e 1-ifthe SAP ASE server is running in single-user mode.

Permissions

Any user canrun is_singleusermode.

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

221

3.83 isnull

Substitutes the value specified in <expression2 >when <expressionl> evaluatesto NULL.

Syntax

isnull (<expressionl>, <expression2>)

Parameters

<expression>
is a column name, variable, constant expression, or a combination of any of these that
evaluates to a single value. It can be of any datatype, including unichar.
<expression>isusually a column name. If <expression> is a character constant, it
must be enclosed in quotes.

Examples

Example 1

Returns all rows from the titles table, replacing null values in price with O:

select isnull (price, 0)
from titles

Usage

® isnull, asystem function, substitutes the value specified in <expression2 >when <expressionl>
evaluates to NULL. For general information about system functions, see Transact-SQL Users Guide.

e The datatypes of the expressions must convert implicitly, or you must use the convert function.

® |f<expressionl> parameterisachar datatype and <expression2>is a literal parameter, the results
from your select statement that includes isnul1 differ based on whether you enable literal
autoparameterization. To avoid this situation, do not autoparameterize char datatype literals within
isnull ().
Stored procedures that use isnull () with the same expression settings may also exhibit unexpected
behavior. If this occurs, re-create the corresponding autoparameterizations.

Reference Manual: Building Blocks
222 PUBLIC Transact-SQL Functions

See also Controlling Literal Parameterization in Performance and Tuning Series: Query Processing and Abstract
Plans; System Administration Guide: Volume 1; Transact-SQL Users Guide

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute isnull.

Related Information

convert [page 110]

3.84 isnumeric

Determines if an expression is a valid numeric datatype.

Syntax

isnumeric (<character expression>)

Parameters

<character_expression>

is a character-type variable, constant expression, or a column name.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 223

Examples

Example 1

Determines if the values in the postalcode column of the authors table contains valid numeric
datatypes:

select isnumeric (postalcode) from authors
Example 2

Determines if the value $100.12345 is a valid numeric datatype:

select isnumeric("$100.12345")

Usage

e Returns 1if the input expression is a valid integer, floating point number, money or decimal type; returns O
if it does not or if the input is a NULL value. A return value of 1 guarantees that you can convert the
expression to one of these numeric types.

® You can include currency symbols as part of the input.

3.85 Ic_id

(Cluster environments only) Returns the ID of the logical cluster whose name you provide, or the current logical
cluster if you do not provide a name.

Syntax

lc id(<logical cluster name>)

Parameters

<logical_cluster name>

is the name of the logical cluster.

Reference Manual: Building Blocks
224 PUBLIC Transact-SQL Functions

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute 1c_id

3.86 Ic_name

(Cluster environments only) Returns the name of the logical cluster with the ID you provide, or the current
logical cluster if you do not provide an ID.

Syntax

lc_name([<logical_cluster_ID>])

Parameters

<logical_cluster_ ID>

is the ID of the logical cluster.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute 1c¢_name.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 225

3.87 Ict_admin

Manages the last-chance threshold (LCT). It returns the current value of the LCT and aborts transactions in a
transaction log that has reached its LCT.

Syntax
lct_admin({{"lastchance" | "logfull" | "reserved for rollbacks"},
<database id>
| "reserve", {<log pages> | 0 }
| "abort", <process-id> [,< database-id>]})
Parameters
lastchance
creates a LCT in the specified database.
logfull

returns 1if the LCT has been crossed in the specified database and O if it has not.
reserved_for_rollbacks

determines the number of pages a database currently reserved for rollbacks.
<database_id>

specifies the database.

reserve
obtains either the current value of the LCT or the number of log pages required for
dumping a transaction log of a specified size.

<log_pages>
is the number of pages for which to determine a LCT.

0
returns the current value of the LCT. The size of the LCT in a database with separate log
and data segments does not vary dynamically. It has a fixed value, based on the size of
the transaction log. The LCT varies dynamically in a database with mixed log and data
segments.

abort

aborts transactions in a database where the transaction log has reached its last-chance
threshold. Only transactions in log-suspend mode can be aborted.

logsegment_freepages

describes the free space available for the log segment. This is the total value of free
space, not per-disk.

<process-id>

Reference Manual: Building Blocks
226 PUBLIC Transact-SQL Functions

is the ID (<spid>) of a process in log-suspend mode. A process is placed in log-
suspend mode when it has open transactions in a transaction log that has reached its
last-chance threshold (LCT).

<database-id>

is the ID of a database with a transaction log that has reached its LCT. If <process-id>
is 0, all open transactions in the specified database are terminated.

Examples

Example 1

Creates the log segment last-chance threshold for the database with dbid 1. It returns the number of
pages at which the new threshold resides. If there was a previous last-chance threshold, it is replaced:

select lct admin("lastchance", 1)
Example 2

Returns 1if the last-chance threshold for the database with dbid of 6 has been crossed, and O if it has not:

select lct admin("logfull", 6)
Example 3

Calculates and returns the number of log pages that would be required to successfully dump the
transaction log in a log containing 64 pages:

select lct admin("reserve", 64)

Example 4

Returns the current last-chance threshold of the transaction log in the database from which the command
was issued:

select lct admin ("reserve", 0)
Example 5

Aborts transactions belonging to process 83. The process must be in log-suspend mode. Only transactions
in a transaction log that has reached its LCT are terminated:

select lct admin ("abort", 83)
Example 6

Aborts all open transactions in the database with dbid of 5. This form awakens any processes that may be
suspended at the log segment last-chance threshold:

select lct admin ("abort", 0, 5)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 227

Example 7

Determines the number of pages reserved for rollbacks in the pubs2 database, which has a dbid of 5:
select lct admin("reserved for rollbacks", 5, 0)

Example 8

Describes the free space available for a database with a dbid of 4:

select lct admin("logsegment freepages", 4)

Usage

lct admin, a system function, manages the last-chance threshold of the log segment’s, including that of
sysimrslog. For general information about system functions, see Transact-SQL Users Guide.
lct admin, a system function, manages the log segment’s last-chance threshold. For general information
about system functions, see Transact-SQL Users Guide.
Iflct admin ("lastchance", <dbid>) returns zero, the logis noton aseparate segmentin this
database, so no last-chance threshold exists.
Whenever you create a database with a separate log segment, the server creates a default last-chance
threshold that defaults to calling sp_thresholdaction. This happens even if a procedure called
sp_thresholdaction does not exist on the server at all.
If your log crosses the last-chance threshold, the SAP ASE server suspends activity, tries to call
sp_thresholdaction, finds it does not exist, generates an error, then leaves processes suspended until
the log can be truncated.
To terminate:
o The oldest open transaction in a transaction log that has reached its LCT, enter the ID of the process
that initiated the transaction.
o All open transactions in a transaction log that has reached its LCT, enter 0 as the <process-id>, and
specify a database ID in the <database-id> parameter.

See also:

dump transaction in Reference Manual: Commands
sp_thresholdaction in Reference Manual: Procedures
System Administration Guide; Transact-SQL Users Guide

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

228

Reference Manual: Building Blocks
PUBLIC Transact-SQL Functions

Permissions

The permission checks for 1ct admin differ based on your granular permissions settings.

Granular Description

Permissions
Enabled With granular permissions enabled, you must have manage database permission to

execute lct admin abort. Any user can execute the other 1ct admin options.

Disabled With granular permissions disabled, you must be a user with sa_role to execute

lct admin abort.Any user can execute the other 1ct admin options.

Auditing

You can enable func_dbaccess auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func_dbaccess 86 func dbaccess ® Roles - Current active roles
e Keywords or options — LCT ADMIN
® Previous value — NULL
e Current value = NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Related Information

curunreservedpgs [page 130]

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 229

3.88 left

Returns a specified number of characters on the left end of a character string.

Syntax

left (<character expression>, <integer expression>)

Parameters

<character_expression>

is the character string from which the characters on the left are selected.

<integer_ expression>

is the positive integer that specifies the number of characters returned. An error is
returned if <integer expression> is negative.

Examples

230

Example 1

Returns the five leftmost characters of each book title:

use pubs

select left(title, 5) from titles
order by title id

The B

Cooki

You C

Sushi

(18 row(s) affected)

Example 2

Returns the two leftmost characters of the character string “abcdef"”:

select left ("abcdef", 2)

(1 row(s) affected)

Reference Manual: Building Blocks
PUBLIC Transact-SQL Functions

Usage

® <character expression> can be of any datatype (except text or image) that can be implicitly
converted to varchar or nvarchar. <character expression> can be aconstant, variable, or a column
name. You can explicitly convert character expression using convert.

® leftisequivalentto substring (<character expression>, <1>, <integer expression>)

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute left.

Related Information

Transact-SQL Functions [page 59]
len [page 231]

str_replace [page 395]

substring [page 402]

3.89 len

Returns the number of characters, not the number of bytes, of a specified string expression, excluding trailing
blanks.

Syntax

len (<string expression>)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 231

Parameters

<string_expression>

is the string expression to be evaluated.

Examples

Example 1

Returns the characters:

select len(notes) from titles
where title id = "PC9999"

Usage

This function is the equivalent of char length (<string expression>).

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute len.

Related Information

Transact-SQL Functions [page 59]
char_length [page 93]

left [page 230]

str_replace [page 395]

Reference Manual: Building Blocks
232 PUBLIC Transact-SQL Functions

3.90 license_enabled

Returns 1if a feature's license is enabled, O if the license is not enabled, or NULL if you specify an invalid license

name.

Syntax

license enabled("ase server" | "ase ha" | "ase dtm" | "ase java" |
"ase asm")

Parameters

ase_server

specifies the license for the SAP ASE server.

ase_ha
specifies the license for the SAP ASE high-availability feature.
ase_dtm
specifies the license for the SAP ASE distributed transaction management features.
ase_java
specifies the license for the Java in Adaptive Server feature.
ase_asm
specifies the license for the SAP ASE advanced security mechanism.
Examples
Example 1

Indicates that the license for the SAP ASE distributed transaction management feature is enabled:

select license enabled("ase dtm")

Usage

For information about installing license keys for SAP ASE features, see your installation guide.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

233

See also:

e |[nstallation guide for your platform
® sp configure system procedure

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute license enabled.

3.91 list_appcontext

Lists all the attributes of all the contexts in the current session. 1ist appcontext is provided by the ACF.

Syntax

list appcontext (["<context name>"])

Parameters

<context_name>

is an optional argument that names all the application context attributes in the session.

Reference Manual: Building Blocks
234 PUBLIC Transact-SQL Functions

Examples

Example 1

Shows the results when a user with appropriate permissions attempts to list the application contexts:

select list appcontext ([context name])

Context Name: (CONTEXT1)
Attribute Name: (ATTR1) Value: (VALUEZ2)
Context Name: (CONTEXTZ2)
Attribute Name: (ATTR1) Value: (VALUEL)

Example 2

Shows the results when a user without appropriate permissions attempts to list the application contexts:

select list appcontext ()

Select permission denied on built-in list appcontext, database DBID

Usage

e This function returns O for success.
e Since built-in functions do not return multiple result sets, the client application receives
listiappcontextrenknsasrnessages

See also Row-Level Access Control in System Administration Guide for more information on the ACF.

Standards

ANSI SQL - Compliance level: Transact-SQL extension

Permissions

The permission checks for 1ist appcontext differ based on your granular permissions settings.

Settings Description

Granular permissions \yith granular permissions enabled, you must have select permission on
enabled list appcontext to execute the function.

Reference Manual: Building Blocks

Transact-SQL Functions PUBLIC 235

Settings Description

Granular permissions
disabled

With granular permissions disabled, you must have select permission on
list_appcontext or be a user with sa_role to execute the function.

Related Information

get_appcontext [page 183]
list_appcontext [page 234]
rm_appcontext [page 321]
set_appcontext [page 335]

3.92 locator_literal

Identifies a binary value as a locator literal.

Syntax

locator literal (<locator type>, <literal locator>)

Parameters

<locator_type>
is the type of locator. One of text locator, image locator, Orunitext locator.
<literal locator>

is the actual binary value of a LOB locator.

Reference Manual: Building Blocks
236 PUBLIC Transact-SQL Functions

Examples

Example 1

This example inserts an image LOB that is stored in memory and identified by its locator in the imagecol

columnofmy table.Useofthe locator literal functionensures that the SAP ASE server correctly

interprets the binary value as a LOB locator.

insert my table (imagecol) values
(locator literal (image locator,
0x9067e£4501000000001000000040100400800000000))

Usage

Use locator literal toensure that the SAP ASE server correctly identifies the literal locator value and does

not misinterpret it as an image or other binary.

See alsodeallocate locator, truncate lob in Reference Manual: Commands.

Permissions

Any user can execute locator literal.

Related Information

locator_valid [page 237]
return_lob [page 315]

create_locator [page 123]

3.93 locator_valid

Determines whether a LOB locator is valid.

Syntax

locator valid (<locator descriptor>)

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

237

Parameters

<locator_descriptor>

is a valid representation of a LOB locator: a host variable, a local variable, or the literal
binary value of a locator.

Examples

Example 1

Validates the locator value 0x9067ef4501000000001000000040100400800000000:

locator valid (0x9067e£4501000000001000000040100400800000000)

Usage

® locator validreturnslif the specified locator is valid. Otherwise, it returns O (zero).

e Alocator becomes invalid if invalidated by the deallocate lob command, or at the termination of a
transaction.

See alsodeallocate locator, truncate lob in Reference Manual: Commands.

Permissions

Any user can execute locator valid.

Related Information

create_locator [page 123]
locator_literal [page 236]
return_lob [page 315]

Reference Manual: Building Blocks
238 PUBLIC Transact-SQL Functions

3.94 lockscheme

Returns the locking scheme of the specified object as a string.

Syntax

lockscheme (<object name>)

lockscheme (<object id> [<, db id>])

Parameters

<object name>

is the name of the object that the locking scheme returns. <object name> can also be
a fully qualified name.

<db_id>
the ID of the database specified by <object id>.
<object_id>

the ID of the object that the locking scheme returns.

Examples

Example 1

Selects the locking scheme for the titles table in the current database:

select lockscheme ("titles")
Example 2

Selects the locking scheme for <object id>224000798 (in this case, the titles table) from database
ID 4 (the pubs2 database):

select lockscheme (224000798, 4)
Example 3

Returns the locking scheme for the titles table (<object name> in this example is fully qualified):

select lockscheme (tempdb.ownerjoe.titles)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 239

Usage

® lockscheme returns varchar (11) and allows NULLs.
® lockscheme defaults to the current database if you:

o Do not provide a fully qualified <object name>.

o Do not provide a<db_id>.

o Provide anull for <db_id>.

e |[fthe specified object is not a table, Llockscheme returns the string “not a table.”

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute lockscheme.

Auditing

You can enable func_obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func_obj access 86 lockscheme ® Roles - Current active roles
® Keywords or options — LOCKSCHEME
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Reference Manual: Building Blocks
240 PUBLIC Transact-SQL Functions

3.95 log

Calculates the natural logarithm of the specified number.

Syntax

log (<approx numeric>)

Parameters

<approx_numeric>

is any approximate numeric (float, real, or double precision)columnname,
variable, or constant expression.
Examples

Example 1

Calculates the log of 20:

select log(20)

2.995732

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 241

Permissions

Any user can execute 1og.

Related Information

loglO [page 242]
power [page 297]

3.96 loglO

Calculates the base 10 logarithm of the specified number.

Syntax

1logl0 (<approx numeric>)

Parameters

<approx_numeric>

is any approximate numeric (float, real, or double precision)columnname,
variable, or constant expression.

Examples

Example 1

Calculates the base 10 log of 20:

select 1logl0(20)

1.301030

Reference Manual: Building Blocks
242 PUBLIC Transact-SQL Functions

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute 1o0g10.

Related Information

log [page 241]
power [page 297]

3.97 loginfo

Returns information about a transaction log.

Syntax
loginfo (<dbid> | '<dbname>', '<option>']
loginfo (<dbid> | '<dbname>', '<option>', '<optionl>']
Parameters
<dbid>
is the database ID.
<dbname>

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

243

<option>

244

PUBLIC

is the database name.

is the specific information you need about the transaction log. Valid options are:

active pages — the total number of pages between the oldest active transaction
and the end of the log.

can_free using dump tran - returnsanumber from O to 100 indicating the
span of transaction log which can be truncated with the dump transaction
command without having to abort oldest active transaction. If there is a secondary
truncation point before the start of the oldest active transaction, then this is the
span in the log (in percent) between the start of the log (first log page) and the
secondary truncation point. If the secondary truncation point is not before the
oldest active transaction, then this is the span in the log (in percent) between the
start of the log (first log page) and start of the oldest active transaction.
checkpoint_date - returns the date of the most recent checkpoint log record.
checkpoint marker —returns the record ID (RID) in the log that contains the
most recent checkpoint log record.

checkpoint page - returns the page number in the log that contains the most
recent checkpoint log record.

database has_active transaction —returns O if there are no active
transactions in the log. Returns 1 if there is an active transaction in the log.

first page — returns the page number of the first log page.

help — shows a message with the different options.

in-memory row storage options:

O© imrs_active pages - returns the number of pages btween the allocation
unit that contains the oldest inserted RID (truncation point) and the last page
of sysimrslogs. This part of the imrs1log cannot be truncated without
moving the corresponding IMRS content to disk.

© imrs_available space — returns the number of unreserved pages (free
pages) in the imrs1log segment that can be used for logging.

© imrs can_free using dump_tran — returns the percentage of total
imrslog pages that can be freed using dump transaction. dump
transaction moves the first page of sysimrslogs to the first page of the
allocation unit that contain the oldest active RID, freeing inactive pages.

o imrs_ first page —returns the first page of sysimrslogs of the IMRS-
enabled database, which specifies the start of imrslog. The first page of
sysimrslogs always points to the first page of the allocation unit, which is the
page next to the allocation page.

© imrs flush sysdb —does notreturn anything, but updates the imrslogptr
and imrsloglastptr columnsin sysdatabases.

© imrs_inactive pages - returns the number of pages between the first page
of sysimrslogs and the last allocation unit that does not contain the oldest
inserted RID (which is just before the truncation point). This part of imrslog
can be truncated.

© imrs in memory lct —returnsthe currentvalue of the last-chance
threshold for the specified segment in a given database.

Reference Manual: Building Blocks
Transact-SQL Functions

© imrs lct size —returns the last chance threshold for the imrslog. All the
transactions on imrslog are suspended if the imrslog extends beyond this
threshold.

© imrs logpages_needed to pack — returns the same information as
imrs numrows to pack, butinterms of the number of imrslog pages.

O imrs numrows_to_ pack — returns the number of IMRS rows that must be
packed to accommodate the number of requested allocation units in imrslog.

© imrs oldest transaction page - returns the RID of the oldest
transaction that performed an insert on the IMRS. This is the first RID of the
active imrslog that must be recovered. The pages between the first page of
sysimrslogs and the oldest inserted RID need not be recovered, but are part
of imrslog.

O© imrs root page — returns the last page of sysimrslogs in the IMRS-
enabled database, indicating the end of the imrslog.

© imrs rowver ximrs - returnsthe number of IMRS row versions that must
be freed to move the truncation point.

O imrs_total pages - returns the total number of imrslog pagesin use. That
is, the total number of pages between the first page of sysimrslogs and the last
page of sysimrslog allocation units, inclusive

® inactive pages — the total number of log pages between first page and
either stp page or oldest transaction, whichever comes first. This is the
number of log pages that will be truncated by the dump transaction command.

® is dump in progress —returnslif dump transactioncommandisin
progress, or returns O if no dump command is in progress.

® is stp blocking dump - returns 1if there is a secondary truncation point
before the start of the oldest active transaction, otherwise, returns O.

® oldest active transaction date —returnsthe start time of oldest active
transaction. Returns binary(8) number which needs to be converted to date as
shown in the example below:

select (convert (datetime, convert (binary(8),
loginfo (4, 'oldest active transaction date')), 109))

® oldest active transaction_page - returns the logical page number of start
of oldest active transaction in the log, or returns O if there is no active transaction.

® oldest active transaction pct —returnsanumber from O to 100 indicating
the span of the oldest active transaction in percentage of total log space.

® oldest active transaction_spid - returns the spid of the session having the
oldest active transaction in the log of the SAP ASE.

® oldest transaction date —isthe date at which the oldest active transaction
started.

® oldest transaction marker — returns the RID (page number and row ID) in
the log on which the oldest active transaction at the time of the most recent
checkpoint, started. If there was no active transaction at the time of the most
recent checkpoint, oldest transaction marker returns the same value as
checkpoint marker.

® oldest transaction page — returns the page number in the log on which the
oldest active transaction at the time of the most recent checkpoint, started. If there

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 245

was no active transaction at the time of the most recent checkpoint,
oldest transaction page returnsthe same value as checkpoint page.

® root page - returns the page number of the last log page.

® stp page - returns the page number of the secondary truncation point (STP), if it
exists. The secondary truncation point (or STP) is the point in the log of the oldest
transaction yet to be processed for replication. The transaction may or may not be
active. In cases where the transaction is no longer active, the STP by definition
precedes the oldest active transaction.

® stp pages — the total number of log pages between the STP and the oldest active
transaction.

® stp span pct —returns a number from O to 100 indicating the span of secondary
truncation point to the end of log with respect to total log space.

® total pages —isthe total number of log pages in the log chain, from
first_paqetOroot_page

® until time date —is the latest time that could be encapsulated in the dump
thatis usable by the until time clause of load transaction.

® until time marker —isthe RID (page number and row ID) of the log record
associated withuntil time date.

® until time page —is the log page on which the log record associated with
until time date resides.

® xactspanbyspid — This option is to be used only with the third parameter, which
is the SPID of the task. Returns the transaction span if the SPID has an active
transaction in the log. Returns O otherwise.

i Note

For a Mixed Log Data (MLD) database, this function returns a value equivalent to O.
The new options for this function are not supported or meant to be used for MLD
databases.

Examples

Example 1

Shows how to display transaction log information for "testdb" database:

select loginfo('testdb', 'database has active transaction') as has_act tran,
loginfo('testdb', 'oldest active transaction spid') as OA tran spid,
loginfo('testdb', 'oldest active transaction pct') as Act log portion pct,
loginfo('testdb', 'can free using dump tran') as dump tran free pct,
loginfo('testdb', 'is stp blocking dump') as is_ stp blocking,
loginfo('testdb', 'stp span pct') as stp span pct

has act tran OAtran spid Act log portion pct dump tran free pct is stp blocking
stp span pct

Reference Manual: Building Blocks
246 PUBLIC Transact-SQL Functions

The function returns the transaction log information:

e 1 active transaction

e 14 isthe SPID of the oldest transaction

e 17 percent of the log that is occupied by an active transaction

e 7 percent of the transaction log that can be freed by using the dump transaction command

e (O blocking secondary truncation points

e 25 percent of the log that is occupied by the span of the secondary truncation point
Example 2

Returns the amount of log space that is spanned for a particular transaction in "testdb" identified by spid =
15.

select loginfo ('testdb', 'xactspanbyspid', 15)
go

Permissions

e Granular permissions disabled — sa role or database owner
e Granular permissions enabled — sa role, techsupport_role, or database owner.

The permission checks for 1oginfo differ based on your granular permissions settings.
Setting Description

Enabled \yitp granular permissions enabled, for:

® imrs free using dumptranandimrs numrows to_ pack - requires the sa_role,
Technical Support role, or be the database owner.
e All other options — database_access role

Disabled \yith granular permissions disabled, for:

® imrs free using dumptranandimrs numrows to_ pack —requires the sa_role or be the
database owner.
e All other options - database_access role

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 247

3.98 lower

Converts uppercase characters to lowercase, returning a character value.

Syntax

lower (<char expr> | <uchar expr>)

Parameters

<char_expr>

is a character-type column name, variable, or constant expression of char, varchar,

nchar, Of nvarchar type.

<uchar_expr>

is a character-type column name, variable, or constant expression of unichar or

univarchar type.

Examples

Example 1

Converts the cities in the publishers database to lowercase:

select lower (city) from publishers

boston
washington
berkeley

Usage
® Jlower istheinverse of upper.

® |[f<char expr>or<uchar expr >is NULL, returns NULL.

See also Transact-SQL Users Guide.

248 PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute lower.

Related Information

upper [page 426]

3.99 Ipad

Returns the string indicated, left-padded, and includes the specified padding to the left of the string to a length

of ten characters.

Syntax

LPAD (<string>, <length>, <string padding>)

Parameters

<string>
Is the string you are returning.

<length>

Is the length, in characters, used for padding.

<string_padding>

Are the characters used for padding.

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

249

Returns

If the value for <string> is longer than the value specified by <1ength>, the return value is truncated to the
number of characters specified by<length>.

Examples

Four characters

Returns a string of four characters, left-padded with 2 2:

select lpad('hi', 4, '2?2")
??hi

Nine characters

Returns a string of nine characters, left-padded with *.:

select lpad(‘hi’, 9, ‘*.’)

B W Wil
Single character

Returns a string of a single character, left-padded with 2 2:

select lpad('hi',1,'??")
h

Usage

e Thereturnvalue is truncated to the value specified for length if <st ring> is longer than <length>.
® The maximum length that 1pad can return depends on:

o The size of the characters. Generally, the maximum length of the string is greater for single-byte
character sets (1 byte per character) than for unichar or for multibyte character sets (less than 1 byte
per character).

o Iftrace flag 244 is disabled, SAP ASE limits the number of bytes to 1024 (about 512 Unicode
characters), up to to 1024 single byte characters, and between 256 and 1024 multibyte characters.

o Iftrace flag 244 is enabled, SAP ASE limits the number of bytes to 16384 (with pro-rata characters
based on character type).

e String length is calculated in characters, not in bytes. For multibyte characters (for example, ut £8), output
buffer sizes (in bytes) may need to be adjusted accordingly, depending on the values of the string and
string padding parameters.

Reference Manual: Building Blocks
250 PUBLIC Transact-SQL Functions

3.100 Iprofile_id

Returns the login profile ID of the specified login profile name, or the login profile ID of the login profile
associated with the current login or the specified login name.

Syntax

lprofile id(<name>)

Parameters

<name>

(Optional) login profile name or a login name.

Examples

Example 1

Returns the login profile ID of the specified login profile name:

select lprofile id('intern 1r')

Example 2

Returns the login profile ID of the current login:

select lprofile id()

Example 3

Returns the login profile ID of a specified login name:

select lprofile id('jon')

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 251

Usage

If you:

e Specify a login profile name - 1profile idreturns the corresponding login profile ID. If you specify a
login name, 1profile id returns the associated (if any) login profile ID.

® Do not specify <name> — 1profile idreturns the login profile ID of the current login.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

The permission checks for 1profile id differ based on your granular permissions settings.

Granular Description
Permissions

Enabled With granular permissions enabled, any user can execute 1profile idto returnthe ID of

their own profile. You must have manage any login profile permission to execute
lprofile idand retrieve the profile ID of other users.

Disabled With granular permissions disabled, any user can execute 1profile idto returnthe |D

of their own profile. You must be a user with sso_role to execute 1profile idand
retrieve the profile ID of other users.

Related Information

Iprofile_name [page 253]

Reference Manual: Building Blocks
252 PUBLIC Transact-SQL Functions

3.101 Iprofile_name

Returns the login profile name of the specified login profile ID, or the login profile name of the login profile

associated with the current login or the specified login suid.

Syntax

lprofile id(<ID>)

Parameters

<ID>

(Optional) login profile ID or a login suid.

Examples

Example 1

Returns the login profile name of a specified login:

select lprofile name (lprofile id('jon'))

admin 1r

Example 2

Returns the login profile name of the specified login profile ID:

select lpreifile mame (3)———=—======—== intern 1r

Example 3

Returns login profile name of the current login:

select lprofile name ()

supervisor 1r

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

253

Usage

If you:

e Specify alogin profile ID — 1profile name returns its corresponding login profile name. If you specify a
login suid, 1profile name returns the associated (if any) login profile name.

® Do not specify <ID> - lprofile name returns the login profile name of the current login.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

The permission checks for 1profile name differ based on your granular permissions settings.

Granular Description
Permissions

Enabled With granular permissions enabled, any user can execute 1profile name to return the

profile name of their own profile. You must have manage any login profile
permission to execute 1profile name and retrieve the profile name of other users.

Disabled With granular permissions disabled, any user can execute 1profile name to return the

profile name of their own profile. You must have sso role to execute lprofile name
and retrieve the profile name of other users.

Related Information

Iprofile_id [page 251]

Reference Manual: Building Blocks
254 PUBLIC Transact-SQL Functions

3.102 Itrim

Removes leading blanks from the character expression. Only values equivalent to the space character in the
current character set are removed.

Syntax

ltrim(<char_ expr> | <uchar expr>)

Parameters

<char_expr>

is a character-type column name, variable, or constant expression of char, varchar,

nchar, or nvarchar type.

<uchar_expr>

is a character-type column name, variable, or constant expression of unichar or

univarchar type.

Examples

Example 1

Removes the leading blanks before "123":

select ltrim (" 123")

Usage

® |[f<char expr>or<uchar expr>is NULL, returns NULL

e For Unicode expressions, returns the lowercase Unicode equivalent of the specified expression. Characters
in the expression that have no lowercase equivalent are left unmodified.

See also Transact-SQL Users Guide.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 255

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute 1trim.

Related Information

rtrim [page 332]

3.103 max

Returns the maximum value in a column or expression.

Syntax

max (<expression>)

Parameters

<expression>

is a column name, constant, function, any combination of column names, constants,
and functions connected by arithmetic or bitwise operators, or a subquery.

Reference Manual: Building Blocks
256 PUBLIC Transact-SQL Functions

Examples

Example 1

Returns the maximum value in the discount column of the salesdetail table as a new column:

select max (discount) from salesdetail

62.200000
Example 2

Returns the maximum value in the discount column of the salesdetail table as a new row:

select discount from salesdetail
compute max (discount)

Usage

® You can use max with exact and approximate numeric, character, and datetime columns; you cannot use
it with bit columns. With character columns, max finds the highest value in the collating sequence. max
ignores null values. max implicitly converts char datatypes to varchar, and unichar datatypes to
univarchar, stripping all trailing blanks.
® unichar datais collated according to the default Unicode sort order.
® max preserves the trailing zeros in varbinary data.
® maxreturnsavarbinary datatype from queries on binary data.
e The SAP ASE server goes directly to the end of the index to find the last row for max when there is an index
on the aggregated column, unless:
© The <expression>notacolumn.
© The column is not the first column of an index.
o Thereis another aggregate in the query.
o Thereisagroup by orwhere clause.

See also:

® compute, group by and having clauses, select, where clause in Reference Manual: Commands

e For general information about aggregate functions, see Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 257

Permissions

Any user can execute max.

Related Information

avg [page 70]
min [page 259]

3.104 migrate_instance_id

If issued in the context of a migrated task, migrate instance idreturnsthe instance ID of the instance
from which the caller migrated. If issued in the context of a nonmigrated task, migrate instance idreturns

the ID of the current instance.

Syntax

migrate instance id()

Usage

You may issuemigrate instance idfrom alogin trigger to determine which statements in the trigger

should be executed in case a task is migrated.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute migrate instance id.

258 PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

3.105 min

Returns the lowest value in a column.

Syntax

min (<expression>)

Parameters

<expression>

is a column name, constant, function, any combination of column names, constants,
and functions connected by arithmetic or bitwise operators, or a subquery. With
aggregates, an expression is usually a column name.

Examples

Example 1

Returns the lowest value in the price column:

select min(price) from titles
where type = "psychology"

Usage

® You can use min with numeric, character, time, and datetime columns, but not with bit columns. With
character columns, min finds the lowest value in the sort sequence. min implicitly converts char
datatypes to varchar, and unichar datatypes to univarchar, stripping all trailing blanks. min ignores
null values. distinct is not available, since it is not meaningful with min.

® min preserves the trailing zeros in varbinary data.

® ninreturns avarbinary datatype from queries onbinary data.

® unichar datais collated according to the default Unicode sort order.

® The SAP ASE server goes directly to the first qualifying row for min when there is an index on the
aggregated column, unless:

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 259

o0 The <expression>isnotacolumn.

o The columnis not the first column of an index.
o Thereis another aggregate in the query.

o Thereisagroup by clause.

See also:

® compute, group by and having clauses, select, where clause in Reference Manual: Commands
® Transact-SQL Users Guide

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute min.

Related Information

Expressions [page 468]
avg [page 70]
max [page 256]

3.106 month

Returns an integer that represents the month in the datepart of a specified date.

Syntax

month (<date expression>)

Reference Manual: Building Blocks
260 PUBLIC Transact-SQL Functions

Parameters

<date_expression>

is an expression of type datetime, smalldatetime, date, or a character stringina

datetime format.

Examples

Example 1

Returns the integer 11:

select month("11/02/03"™)

Usage

month (<date expression>) isequivalentto datapart (<mm>, <date expression>).

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute month.

Related Information

System and User-Defined Datatypes [page 13]
datepart [page 148]

day [page 152]

year [page 453]

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

261

3.107 mut_excl_roles

Returns information about the mutual exclusivity between two roles.

Syntax

mut excl roles (<rolel, role2 >[membership | activation])

Parameters

<rolel>

is one user-defined role in a mutually exclusive relationship.

<role2>
is the other user-defined role in a mutually exclusive relationship.
<level>
is the level (membership or activation) at which the specified roles are exclusive.
Examples
Example 1

Shows that the admin and supervisor roles are mutually exclusive:

alter role admin add exclusive membership supervisor
select
mut excl roles("admin", "supervisor", "membership")

Usage

mut_excl roles, asystem function, returns information about the mutual exclusivity between two roles. If
the System Security Officer defines role1l as mutually exclusive with role2 or a role directly contained by
role2, mut_excl roles returnsl. If the roles are not mutually exclusive, mut _excl roles returnsO.

See also:

Reference Manual: Building Blocks
262 PUBLIC Transact-SQL Functions

® alter role,create role,drop role,grant, set, revoke in Reference Manual: Commands
e Transact-SQL Users Guide
® sp activeroles, sp displayroles in Reference Manual: Procedures

Standards

ANSI SQL - Compliance level: Transact-SQL extension

Permissions

Any user can execute mut_excl roles.

Related Information

proc_role [page 298]
role_contain [page 323]
role_id [page 324]
role_name [page 326]

3.108 newid

Generates human-readable, globally unique IDs (GUIDs) in two different formats, based on arguments you
provide. The length of the human-readable format of the GUID value is either 32 bytes (with no dashes) or 36
bytes (with dashes).

Syntax

newid ([<optionflag>])

Parameters

<option flag>

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 263

e 0, or novalue — the GUID generated is human-readable (varchar), but does not
include dashes. This argument, which is the default, is useful for converting values
into varbinary.

e -1-the GUID generated is human-readable (varchar) and includes dashes.

e -0x0 —returnsthe GUID as avarbinary.

e Any other value for newid returns NULL.

Examples

Example 1

Creates a table with varchar columns 32 bytes long, then uses newid with no arguments with the insert
statement:

create table t (UUID varchar (32))
go

insert into t values (newid())
insert into t values (newid())

go

select * from t

f8ld4fae7decl1d0a76500a0c9lebbf6
7cd5b7769df75cefe040800208254639

Example 2

Produces a GUID that includes dashes:

select newid (1)

b59462af-a55b-469d-a79f-1d6c3clel9e3
Example 3

Creates a default that converts the GUID format without dashes to a varbinary (16) column:

create table t (UUID VC varchar(32), UUID varbinary (16))
go

create default default guid

as

strtobin (newid ())

go

sp_bindefault default guid, "t.UUID"

go

insert t (UUID VC) values (newid())

go

Example 4

Returns a new GUID of type varbinary for every row that is returned from the query:

select newid(0x0) from sysobjects

Reference Manual: Building Blocks
264 PUBLIC Transact-SQL Functions

Example 5

Uses newid with the varbinary datatype:

sp_addtype binguid, "varbinary (16)"

create default binguid dflt

as

newid (0x0)

sp_bindefault "binguid dflt", "binguid"

create table Tl (empname char (60), empid int, emp guid binguid)

insert Tl (empname, empid) values ("John Doe", 1)
insert Tl (empname, empid(values ("Jane Doe", 2)
Usage

® newid generates two values for the globally unique ID (GUID) based on arguments you pass to newid. The
default argument generates GUIDs without dashes. By default newid returns new values for every filtered
row.

® You can use newid in defaults, rules, and triggers, similar to other functions.

e Make sure the length of the varchar column is at least 32 bytes for the GUID format without dashes, and
at least 36 bytes for the GUID format with dashes. The column length is truncated if it is not declared with
these minimum required lengths. Truncation increases the probability of duplicate values.

e Anargument of zero is equivalent to the default.

® You can use the GUID format without dashes with the st rtobin function to convert the GUID value to 16-
byte binary data. However, using strtobin with the GUID format with dashes results in NULL values.

e Because GUIDs are globally unique, they can be transported across domains without generating
duplicates.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute newid.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 265

3.109 next_identity

Retrieves the next identity value that is available for the next insert.

Syntax

next identity(<table name>)

Parameters

<table name>

identifies the table being used.

Examples

Example 1

Updates the value of c2 to 10. The next available value is 11.

select next identity ("t1")

Usage

next identity returns:

® The next value to be inserted by this task. In some cases, if multiple users are inserting values into the
same table, the actual value reported as the next value to be inserted is different from the actual value
inserted if another user performs an intermediate insert. If you insert identity values yourself via the set
identity insert table on statementthennext identity will not get updated by the insert. Only
update will be the reserve identity () functionuntil identity insert isturned off again.

e A~varchar character to support any precision of the identity column. If the table is a proxy table, a non-
user table, or the table does not have identity property, NULL is returned.

Reference Manual: Building Blocks
266 PUBLIC Transact-SQL Functions

Permissions

The permission checks for next identity differ based on your granular permissions settings.

Granular Description
Permissions

Enabled With granular permissions enabled, you must be the table owner, or be a user with

select permission on the identity column of the table, or have manage database
permission to execute next identity.

Disabled With granular permissions disabled, you must be the database owner or table owner, or be
auser with sa_role, or have select permission on the identity column of the table to
execute next identity.

Auditing

You can enable func_obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func_obj access 86 next identity ® Roles - Current active roles
® Keywords or options — NEXT IDENTITY
® Previous value — NULL
® Current value — NULL
e QOther information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.110 nullif

Allows SQL expressions to be written for conditional values. nullif expressions can be used anywhere a value
expression can be used; alternative for a case expression.

Syntax

nullif (<expression>, <expression>)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 267

Parameters

nullif
compares the values of the two expressions. If the first expression equals the second
expression, nullif returns NULL. If the first expression does not equal the second
expression, nullif returns the first expression.

<expression>
is a column name, a constant, a function, a subquery, or any combination of column
names, constants, and functions connected by arithmetic or bitwise operators.

Examples

Example 1

Selectsthe titles and type fromthe titles table. If the book type is UNDECIDED, nullif returns a
NULL value:

select title,
nullif (type, "UNDECIDED")
from titles

Alternately, you can also write:

select title,
case
when type = "UNDECIDED" then NULL
else type
end
from titles

Usage

268

nullif expression alternate for a case expression.

nullif expression simplifies standard SQL expressions by allowing you to express a search condition as a
simple comparison instead of using a when. . . then construct.

You can use nullif expressions anywhere an expression can be used in SQL.

At least one result of the case expression must return a non-null value. For example the following results in
an error message:

select price, coalesce (NULL, NULL, NULL)
from titles

All result expressions in a CASE expression must not be NULL.

If your query produces a variety of datatypes, the datatype of a case expression result is determined by
datatype hierarchy. If you specify two datatypes that the SAP ASE server cannot implicitly convert (for
example, char and int), the query fails.

Reference Manual: Building Blocks
PUBLIC Transact-SQL Functions

See also case, coalesce, select, if...else, where clause in Reference Manual: Commands.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute nullif.

Related Information

Expressions [page 468]

3.111 object_attr

Reports the table's current logging mode, depending on the session, table and database-wide settings.

Syntax

object attr(<table name>, <string>)

Parameters

<table name>
name of a table.
<string>
is the name of the table property that has been queried. The supported string values

are:

dml_logging Returns the DML logging level for the requested object in effect,

based on the explicitly set table or database’'s DML logging level.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 269

dml_logging Returns the DML logging level for the current session, taking into

account the user running object attr, the table's schema, and
rules regarding multistatement transactions, and so on. The
return value from this argument can be different for different
users, and different for statements or transactions for the same
user.

for session

compression Returns the compression type for the requested object.

help Prints a list of supported string arguments.

Examples

Example 1

To determine which properties he or she can query, the user runs:

select object attr('sysobjects', 'help')

Usage: object attr('tabname',K 'attribute')
List of options in attributes table:

0 : help

1 : dml logging

2 : dml logging for session

3 : compression

dml logging reports the statically defined dml logging level for the object, and dml logging for
session reports the runtime logging level chosen for the object, depending on the database-specific and
session settings.

Example 2

The default logging mode of a table with durability set to ful1:

select object attr ("pubs2..authors",
"dml logging")
Returns: FULL

Example 3

If the session has logging disabled for all tables, the logging mode returned for tables owned by this user is

minimal.

select object attr("pubs2..authors",
"dml logging")

Returns: FULL

SET DML LOGGING MINIMAL

go

select object attr("pubs2..authors",
"dml logging for session")

Returns: MINIMAL

Reference Manual: Building Blocks
270 PUBLIC Transact-SQL Functions

Example 4

If a table has been altered to explicitly select minimal logging, object attr returns avalue of minimal,
even if the session and database-wide logging is FULL.

create database testdb WITH DML LOGGING = FULL
go

create table non logged table (...)

WITH DML_LOGGING = MINIMAL

go
select object attr("non logged table",
"dml logging")
Returns: MINIMAL
Example 5

Changes a table’s logging from full to minimal. If you explicitly create a table with ful1 logging, you can
reset the logging to minimal during a session if you are the table owner or a user with the sa_role:

1. Create the testdb database with minimal logging:

create database testdb
with dml logging = minimal

2. Create atable withdml loggingsetto full:

create table logged table(...)
with dml logging = full

3. Reset the logging for the sessiontominimal:
set dml logging minimal
4. The logging for the table is minimal:

select object attr("logged table",
"dml logging for session")

minimal
Example 6

If you create a table without specifying the logging mode, changing the session’s logging mode also
changes the table’s logging mode:

e (Create the table normal_table:

create table normal table

® Check the session’s logging:

select object attr("normal table", "dml logging")

® Set the session logging tominimal:

set dml logging minimal

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 271

e Thetable'sloggingissettominimal:

select object attr("normal table",
"dml logging for session")

minimal
Example 7

The logging mode returned by object attr depends on the table you run it against. In this example, user
joe runs a script, but the logging mode the SAP ASE server returns changes. The tables joe.own table

andmary.other tableusea full logging mode:

select object attr("own table","dml logging")

When joe runs object attr againstmary.other table, this table is also set to full:

select object attr("mary.other table", "dml logging")

If joe changes the dml_logging to minimal, only the logging mode of the tables he owns are affected:
set dml logging minimal

select object attr("own table", "dml logging for session")

MINIMAL

Tables owned by other users continue to operate in their default logging mode:

Select object attr("mary.other table", "dml logging for session")

Example 8

Identify the run-time choices of logging a new show_exec_info, and use it in the SQL batch:
1. Enable set showplan:

set showplan on
2. Enable the set command:

set show exec info on

3. Setdml loggingtominimal and check the logging with object attr:

set dml logging minimal
select object attr("logged table", "dml logging for session")

Reference Manual: Building Blocks

272 PUBLIC Transact-SQL Functions

4. Delete rows from the table:

delete logged table

The SAP ASE server reports the table’s logging mode at run-time with show _exec info parameter.

Usage

e Thereturntypeisavarchar, which appropriately returns the value of the property (for example, on or off)
depending on the property queried for.

® The logging mode as reported by extensions to showplan output might be affected at run-time, if there are
set statements in the same batch, preceding the execution of the DML, which changes the logging mode
of the table

e The return value is the value NULL (not the string “NULL") for an unknown property.

® A special-type of string parameter, help prints to the session’s output all the currently supported
properties for object attr. This allows you to quickly identify which properties are supported by
object attr.

3.112 object_id

Returns the object ID of the specified object.

Syntax

object id(<object name>)

Parameters

<object_name>

is the name of a database object, such as a table, view, procedure, trigger, default, or
rule. The name can be fully qualified (that is, it can include the database and owner
name). Enclose the <object name> in quotes.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 273

Examples

Example 1

Returns the object IDs from titles:

select object id("titles")

208003772
Example 2

Returns the object ID from sysobjects:

select object id("master..sysobjects")

Usage

® object id, asystem function, returns the object’s ID. Object IDs are stored in the id column of

sysobjects.

e |nstead of consuming resources, object id discards the descriptor for an object that is not already in the

cache.
See also:

e Transact-SQL Users Guide
® sp help in Reference Manual: Procedures

® sysobjects in Reference Manual: Tables

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute object id.

274 PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

Auditing

You can enable func obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event = Command or access audited Information in extrainfo:

func_obj access 86 object id ® Roles — Current active roles
® Keywords or options — OBJECT ID
® Previous value — NULL
® Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Related Information

col_name [page 101]
db_id [page 156]
object_name [page 275]

3.113 object_name

Returns the name of the object with the object ID you specify; up to 255 bytes in length.

Syntax

object name (<object id>[, <database id>])

Parameters

<object_id>

is the object ID of a database object, such as a table, view, procedure, trigger, default, or
rule. Object IDs are stored in the id column of sysobjects.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 275

<database_id>

is the ID for a database if the object is not in the current database. Database IDs are

storedinthe db_idcolumnof sysdatabases.

Examples

Example 1

select object name (208003772)

titles

Example 2

select object name (1, 1)

sysobjects

Usage

See also:

e Transact-SQL Users Guide
® sp help in Reference Manual: Procedures

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute object name.

276 PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

Auditing

You can enable func_obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func_obj access 86 object name ® Roles — Current active roles
® Keywords or options — OBJECT NAME
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Related Information

col_name [page 101]
db_id [page 156]
object_id [page 273]

3.114 object_owner._id

Returns an object’s owner ID.

Syntax

object owner id(<object id>[, <database id>])

Parameters

<object_id>
is the ID of the object you are investigating.

<database_id>

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 277

is the ID of the database in which the object resides.

Examples

Example 1

Selects the owner’s ID for an object with an ID of 1, in the database with the ID of 1 (the master database):

select object owner id(1,1)

Permissions

Any user can execute object owner id.

Auditing

You can enable func obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Information in extrainfo:

func_obj access 86 object owner id ® Roles - Current active roles
® Keywords or options — OBJECT OWNER_ID
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Reference Manual: Building Blocks
278 PUBLIC Transact-SQL Functions

3.115 pageinfo

Returns information from the page header or extent structure for a given object. This function is used to
programatically retrieve data from a page or extent for a given object and to build troubleshooting scripts using

SQL interfaces.

Syntax

pageinfo (<db id>, <page number>, "field name" | "help")

Parameters

<database_id>

is the ID of the database in which the page resides.

<page_number>

page number for which the information is to be fetched.

field name

name of fields that can be fetched from either the page header, or the associated extent
structure from the allocation page.

page number — current page number field on the page header.
next page — next page number field on the page header.

previous page — previous page number value on the page header.
partition id — partition ID for which this page belongs.

index id — index ID value on the page header.

Following are the semantics of the value returned for data pages. For other types of
page formats, the values reported by these fields is interpreted depending on the page
type:

free offset — offset of first unused byte on page header.

status word — status word describing internal properties of a page.
min row length — minimum row-length of rows on this page.

next row number — next row number that can be inserted on this page.

index level — index level of a valid data page or index page. Datapages return a value
of 0.

The following fields retrieve information about the extent that controls the given page
number from the corresponding allocation page:

object id on extent — object ID for which the page belongs.
index id on extent — index ID for which the page belongs.
partition id on extent — partition ID for which the page belongs.

Reference Manual: Building Blocks

Transact-SQL Functions

PUBLIC

279

e extent oam page — OAM page ID that contains the allocation page entry for the
allocation page containing the extent for which the page belongs.

® page allocated — checks whether the page number is currently allocated. Returns
the partition ID if the page number is currently allocated; otherwise returns O.

e extent allocated — given the allocation unit/allocation page number, checks
whether the extent is currently allocated. Returns the object ID if the extent is
currently allocated; otherwise returns O.

e allocated extents — returns the number of extents allocated, to any object or index,
on the allocation page controlling the given page number.

e allocated objects — returns the distinct object IDs allocated on the allocation unit
corresponding to the page. A specified allocation unit or allocation page number
returns the number of distinct objects (as an object ID) in the allocation unit.

e allocated partitions — returns distinct ptnid and indid combination on the allocation
unit corresponding to the page. A specified allocation unit or allocation page
number returns the number of distinct partitions (as a partition ID and index ID) in
the allocation unit.

help

lists the possible options for the field name parameter.

Examples

Example 1

Lists the possible options for the field name parameter for database <db_id>1and <page number> 1:

select pageinfo(l,1,"help")
List of options in Page fields table:
0 : help
page number
next page
previous page
partition id
index id
free offset
status word
min row length
next row number
10 : index level
11 : object id on extent
12 : index id on extent
13 : partition id on extent
14 : extent oam page
15 : lob compression level
16 : page allocated
17 : extent allocated
18 : allocated extents
19 : allocated objects
20 : allocated partitions
21 : number of alloc units
22 : allocated pages
NULL
(1 row affected)

O 0 Jo) Ul WN -

Reference Manual: Building Blocks
280 PUBLIC Transact-SQL Functions

Example 2

Returns the index level of index page 3552 of the database with a <db_id> of 1:

select pageinfo(1l,3552,"index level")

(1 row affected)
Example 3

Returns the number of distinct object (using object_id) that are allocated on allocation unit O of the
database witha <db_id>of 1.

select pageinfo(l,0,"allocated objects")

11
(1 row affected)

Example 4

Returns the distinct partitions (as a partition ID and index ID) that are allocated on allocation unit O of the
database witha <db_id>of I

select pageinfo(l,0,"allocated partitions")

24
(1 row affected)

Usage

e |faNULL value is passed for the database ID, uses the current database ID.

e Returns NULL if a NULL value is passed for the page number or field name.

e Return NULL if an invalid or non-existent page number is provided, or an unknown field name is requested.

® pageinfois provided as a diagnostic interface. In a busy system, where page identities are constantly
changing, or pages are being deallocated and re-allocated to other objects repeatedly, using pageinfo
might result in either inconsistent results, or result in errors during accessing pages. The recommended
use is in situations where the affected pages are not undergoing frequent accesses or modifications.

Permissions

Requiressybase ts role

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 281

Auditing

You can enable func_obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func obj access 86 pageinfo ® Roles — Current active roles
® Keywords or options — PAGEINFO
® Previous value — NULL
® Current value — NULL
e QOther information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.116 pagesize

Returns the page size, in bytes, for the specified object.

Syntax

pagesize (<object name> [,< index name>] | <object id>
[,<db_id> [, <index id> 1])

Parameters

<object name>

is the object name of the page size of this function returns.
<index name>

indicates the index name of the page size you want returned.
<object_id>

is the object ID of the page size this function returns.
<db_id>

is the database ID of the object.
<index_id>

is the index ID of the object you want returned.

Reference Manual: Building Blocks
282 PUBLIC Transact-SQL Functions

Examples

Example 1

Selects the page size for the title idindex inthe current database.

select pagesize("title", "title id")
Example 2

Returns the page size of the data layer for the object with <object id>1234 and the database with a
<db_id> of 2 (the previous example defaults to the current database):

select pagesize (1234,2, null)
select pagesize (1234,2)
select pagesize (1234)

Example 3

All default to the current database:

select pagesize (1234, null, 2)
select pagesize (1234)

Example 4

Selects the page size for the titles table (object id 224000798) from the pubs2 database (db_id 4):

select pagesize (224000798, 4)
Example 5

Returns the page size for the nonclustered index’s pages table mytable, residing in the current database:

pagesize (object id(‘mytable’), NULL, 2)
Example 6

Returns the page size for object titles clustindex from the current database:

select pagesize("titles", "titles clustindex")

Usage

® pagesize defaults to the data layer if you do not provide an index name or <index_1id> (for example,
select pagesize ("t1"))if you usethe word “null” as a parameter (for example, select
pagesize ("tl", null).

e |f the specified object is not an object requiring physical data storage for pages (for example, if you provide
the name of a view), pagesize returns O.

e |f the specified object does not exist, pagesize returns NULL.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 283

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute pagesize.

Auditing

You can enable func_obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func obj access 86 pagesize ® Roles - Current active roles
e Keywords or options — PAGESIZE
® Previous value — NULL
e Current value - NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.117 partition_id

Returns the partition ID of the specified data or index partition name.

Syntax

partition id(<table name>, <partition name>[,<index name>])

Reference Manual: Building Blocks
284 PUBLIC Transact-SQL Functions

Parameters

<table name>
is the name for a table.
<partition_name>

is the partition name for a table partition or an index partition.

<index_ name>

is the name of the index of interest.

Examples

Example 1

Returns the partition ID corresponding to the partition name testtable ptnl andindexid O (the base
table). The testtable must exist in the current database:

select partition id("testtable", "testtable ptnl")

Example 2

Returns the partition ID corresponding to the partition name testtable clust ptnl for the index name
clust_indexl. The testtable must exist in the current database:

select partition id("testtable", "testtable clust ptnl", "clust indexl")

Example 3

This is the same as the previous example, except that the user need not be in the same database as where
the target table is located:

select partition id("mydb.dbo.testtable", "testtable clust ptnl",
"clust indexl")

Usage

You must enclose <table name>, <partition name>and<index name> in quotes.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 285

Auditing

You can enable func obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event = Command or access audited Information in extrainfo:

func_obj access 86 partition id ® Roles - Current active roles
® Keywords or options — PARTITION ID
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Related Information

data_pages [page 132]
object_id [page 273]
partition_name [page 286]
reserved_pages [page 311]
row_count [page 329]
used_pages [page 386]

3.118 partition_name

Returns the explicit name of a new partition, partition name returns the partition name of the specified data
or index partition id.

Syntax

partition name (<indid>, <ptnid>[, <dbid>])

Reference Manual: Building Blocks
286 PUBLIC Transact-SQL Functions

Parameters

<indid>
is the index ID for the target partition.

<ptnid>
is the ID of the target partition.

<dbid>
is the database ID for the target partition. If you do not specify this parameter, the
target partition is assumed to be in the current database.

Examples

Example 1

Returns the partition name for the given partition ID belonging to the base table (with an index ID of 0). The
lookup is done in the current database because it does not specify a database ID:

select partition name(0, 1111111111)
Example 2

Returns the partition name for the given partition ID belonging to the clustered index (index ID of 1 is
specified) in the testdb database.

select partition name (1, 1212121212, db_id("testdb")

Usage

If the search does not find the target partition, the returnis NULL.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 287

Auditing

You can enable func_obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func _obj access 86 partition name ® Roles - Current active roles
® Keywords or options — PARTITION NAME
® Previous value — NULL
e Current value - NULL
e QOther information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Related Information

data_pages [page 132]
object_id [page 273]
partition_id [page 284]
reserved_pages [page 311]
row_count [page 329]

3.119 partition_object_id

Displays the object ID for a specified partition ID and database ID.

Syntax

partition object id(<partition id> [, <database id>])

Parameters

<partition_id>

Reference Manual: Building Blocks
288 PUBLIC Transact-SQL Functions

is the ID of the partition whose object ID is to be retrieved.
<database_ id>

is the database ID of the partition.

Examples

Example 1

Displays the object ID for partition ID 2:
select partition object id(2)

Example 2

Displays the object ID for partition ID 14 and database ID 7:
select partition object id(14,7)

Example 3

Returns a NULL value for the database ID because a NULL value is passed to the function:

select partition object id(1424005073, NULL)

NULL
(1 row affected)

Usage

® partition object idusesthe current database ID if you do not include a database ID.

® partition object idreturns NULL if you:
© UseaNULL value for the <partition id>.
© Include a NULL value for <database id>.

o Provide an invalid or non-existent <partition id>or <database id>.

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

289

Auditing

You can enable func_obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func_obj access 86 partition object id ® Roles - Current active roles
e Keywords or options —
PARTITION OBJECT ID
® Previous value — NULL
® Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.120 password_random

Generates a pseudorandom password that satisfies the global password complexity checks defined on the SAP
ASE server. “Pseudorandom” indicates that the SAP ASE server is simulating random-like numbers, since no
computer generates truly random numbers.

Syntax

password random ([<pwdlen> | null])

password random ({<pwdlen> | null}, {<substring> | null})

Parameters

<pwdlen>
is an integer that specifies the length of the random password. If you omit <pwdlen>,
the SAP ASE server generates a password with a length determined by the “<minimum
password length>" global option, for which the default value is 6.

<substring>

Reference Manual: Building Blocks
290 PUBLIC Transact-SQL Functions

Examples

Example 1

Shows the password complexity checks stored in the server:

minimum

disallow simple passwords:

min digits in password:

min alpha in password:

min upper char in password:

min special char in password: =
min lower char in password:

is a string that will not be included in the generated random password. Pass the name

of the login the password is being generated for to avoid violating the disallow
simple passwords password complexity check.

password length: 1

N N SN N e

select password random/()

6pY516UT]Q

Example 2

Shows password complexity checks stored in the server:

minimum

password length:

disallow simple passwords:

minimum
minimum
minimum
minimum
minimum

digits in password:
alpha in password:

upper-case characters in password:
lower-case characters in password:

special characters in password:

select password random(25)

S/031uX[ISi:Y=28f.[eH%P51

Example 3

N SR SO NG

Updates the password column with random passwords for all employees who have names that begin with

“A"

update employee
set password = password random/()
where name like 'AS%'

Example 5

Enclose the random password generated in single or double quotes if using it directly:

select @password = password random(11l)

$k55Mmf /202
sp_addlogin 'jdoe', '$k55Mmf/2U2"

Example 6

Generates a random password with the length 4 that does not contain the sub-string am3.

disallow simple passwords: 1

minimum

password length: 3

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

291

select password random(4,"am3")

Example 7

Generates a random password with the default length that does not contain the sub-string am3.

disallow simple passwords: 1
minimum password length: 3
select password random(null,"am3")

Example 8

Generates a random password with the default length that does not contain the sub-string am3%$a.

disallow simple passwords: 1
minimum password length: 3
select password random(null,"am3%Sa")

Usage

The passwords generated by password random () are pseudorandom; to generate truly random passwords,
use a stronger random generator.

The complexity checks are:

® Minimum password length

e Disallow simple passwords

e Minimum number of:
o Digits in password
o Special characters in password
o Alphabetic characters in password
o Uppercase characters in password
o Lowercase characters in password

See Security Administration Guide > Manage SAP ASE Logins and Database Users > Choose and Create a
Password > Password Complexity Checks.

Reference Manual: Building Blocks
292 PUBLIC Transact-SQL Functions

3.121 patindex

Returns the starting position of the first occurrence of a specified pattern.

Syntax

patindex ("%<pattern>%", <char expr>|<uchar expr>[, using
{bytes | characters | chars}])

Parameters

<pattern>

is a character expression of the char or varchar datatype that may include any of the
pattern-match wildcard characters supported by the SAP ASE server. The % wildcard
character must precede and follow <pattern> (except when searching for first or last
characters)..

<char_ expr>

is a character-type column name, variable, or constant expression of char, varchar,

nchar, nvarchar, text locator, Orunitext locator type
<uchar_expr>

is a character-type column name, variable, or constant expression of unichar, or

univarchar type.
using

specifies a format for the starting position.
bytes

returns the offset in bytes.

chars or characters
returns the offset in characters (the default).

Examples

Example 1

Selects the author ID and the starting character position of the word “circus” in the copy column:

select au id, patindex("%circus%", copy)
from blurbs

au_id

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

293

486-29-1786 0

648-92-1872 0

998-72-3567 38

899-46-2035 31

672-71-3249 0

409-56-7008 0
Example 3

Finds all the rows in sysobjects that start with “sys” with a fourth character that is “a", “b", “c”, or “d":

select name
from sysobjects
where patindex ("sys[a-d]%", name) > 0

name
sysalternates
sysattributes
syscharsets
syscolumns
syscomments
sysconfigures
sysconstraints
syscurconfigs
sysdatabases
sysdepends
sysdevices
Usage
® patindex, astring function, returns an integer representing the starting position of the first occurrence of
<pattern> in the specified character expression, or a O if <pattern> is not found.
® You can use patindex on all character data, including text and image data.
e For text,unitext, and image data, if ciphertext is setto 1, then patindex is not supported. An error
message appears.
e For text,unitext, and image data, if ciphertext is set to 0, then the byte or character index of the
pattern within the plaintext is returned.
® fForunichar,univarchar, and unitext, patindex returns the offset in Unicode characters. The pattern
string is implicitly converted to UTF-16 before comparison, and the comparison is based on the default
unicode sort order configuration. For example, this is what is returned if a unitext column contains
row value U+0041U+0042U+d800U+dcO0U+0043:
select patindex ("%C%", ut) from unitable
4
e By default, patindex returns the offset in characters; to return the offset in bytes (multibyte character
strings), specify using bytes.
® Include percent signs before and after <pattern>. To look for <pattern> as the first characters in a
column, omit the preceding %. To look for <pattern> as the last characters in a column, omit the trailing
%
® |[f<char expr>or<uchar expr>is NULL, patindex returnsO.
Reference Manual: Building Blocks
294 PUBLIC Transact-SQL Functions

e |fyougive avarchar expression as one parameter and a unichar expression as the other, the varchar
expression is implicitly converted to unichar (with possible truncation).

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute patindex.

Related Information

Pattern Matching with Wildcard Characters [page 489]
charindex [page 95]
substring [page 402]

3.122 pi

Returns the constant value 3.1415926535897936.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 295

Examples

Example 1

Returns pi:

select pi()

3.1415893

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute pi.

Related Information

degrees [page 168]
radians [page 302]

Reference Manual: Building Blocks
296 PUBLIC Transact-SQL Functions

3.123 power

Returns the value that results from raising the specified number to a given power. power, a mathematical
function, returns the value of <value> raised to the power <power>. Results are of the same type as <value>.

Syntax

power (<value>, <power>)

Parameters

<value>
is a numeric value.
<power>

is an exact numeric, approximate numeric, or money value.

Examples

Example 1

Returns the value that results from raising 2 to the power of 3:

select power (2, 3)

Usage

In expressions of type numeric or decimal, this function returns precision:38, scale 18.

See also Transact-SQL Users Guide.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 297

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute power.

Related Information

exp [page 179]
log [page 241]
logl0 [page 242]

3.124 proc_role

Returns information about whether the user has been granted a specified role.

i Note

SAP recommends that you use has role instead of proc role. You need not, however, convert your
existing uses of proc_roletohas role.

Syntax

proc_role ("<role name>")

Parameters

<role_name>

is the name of a system or user-defined role.

Reference Manual: Building Blocks
298 PUBLIC Transact-SQL Functions

Examples

Example 1

Creates a procedure to check if the user is a system administrator:

create procedure sa check as

if (proc_role("sa_rgle") > 0)
begin
print "You are a System Administrator."
return (1)
end
Example 2

Checks that the user has been granted the system security officer role:

select proc role("sso role")
Example 3

Checks that the user has been granted the operator role:

select proc role("oper role")

Usage

® Usingproc_role with a procedure that starts with “sp_" returns an error.
® proc_role, asystem function, checks whether an invoking user has been granted, and has activated, the
specified role.
® proc role returns O if the user has:
o Not been granted the specified role
© Not been granted a role which contains the specified role
o Been granted, but has not activated, the specified role
® proc_role returns 1if the invoking user has been granted, and has activated, the specified role.

® proc_role returns 2 if the invoking user has a currently active role, which contains the specified role.

See also:

® alter role,create role,drop role, grant, revoke, set in Reference Manual: Commands
e Transact-SQL Users Guide

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 299

Permissions

Any user can execute proc_role.

Auditing

Only the execution of proc_role from within a system stored procedure is audited.

You can enable security auditing option to audit this function. Values in event and extrainfo columns
from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

security 80 proc_role ® Roles - current active roles
e Keywords or options — NULL
® Previous value — NULL
e Current value — NULL
e (Other information — Required roles
® Proxy information — original login name, if a set

proxy isin effect

For more information about auditing, see Security Administration Guide > Auditing.

Related Information

mut_excl_roles [page 262]
role_contain [page 323]
role_id [page 324]
role_name [page 326]
show_role [page 360]

3.125 pssinfo

Returns information from the SAP ASE process status structure (pss).

Syntax

pssinfo(<spid> | 0, '<pss field>' [,<database name>])

Reference Manual: Building Blocks
300 PUBLIC Transact-SQL Functions

Parameters
<spid>

<pss_field>

Examples

Example 1

is the process ID. When you enter O, the current process is used.

is the process status structure field. Valid values are:

dn — distinguished name when using LDAP authentication.
extusername — When using external authentication like (PAM, LDAP),
extusername returns the external PAM or LDAP user name used.

ipaddr — client IP address.

ipport — client IP port number used for the client connection associated with the

user task being queried.

isolation level —isolation level for the current session.

tempdb pages — number of tempdb pages used.

trace spid - returns the spid the set tracefile command is tracing.
tracefile is_ set —returnsanon-zero value if the spid is being traced.
trace fname - returns the tracefile opened for capture.

suid = SUID of the spid.

progname — name of the client driver program, supplied at log in.

progvers — version of the client driver program, supplied at log in.

tdsvers — version of the client TDS, as an SAP ASE client.

client progname - version of the currently active client program.

client progvers — version of the currently active client program.

client tdsvers — version of the currently active client TDS.

retstat — return status of the last executed stored procedure.
client cap largeident —returnslif the client supports large identifiers.
has_sysversions_tran —returns NULL if <database name> is not found

Returns 1if the process includes any on-disk, multi-version concurrency control
(on-disk MVCC) transactions for <database name>.

Displays the port number for spid number 14:

select pssinfo (14, 'ipport"')

Reference Manual: Building Blocks

Transact-SQL Functions

PUBLIC

301

Usage

® <database name>isignored for all <pss field> invocations exceptthe has sysversions tran
option.

® The pssinfo function also includes the option to display the external user name and the distinguished
name.

® ipport output, combined with ipaddr output, allows you to uniquely identify network traffic between the
SAP ASE server and the client.

Permissions

The permission checks for pssinfo differ based on your granular permissions settings.

Granular Description
Permissions

Enabled With granular permissions enabled, you must be the owner of the process ID, or have

manage server permissiontoexecute pssinfo.

Disabled With granular permissions disabled, you must be the owner of the process ID, or be a

user with sa_role or sso_role to execute pssinfo.

3.126 radians

Converts degrees to radians. Returns the size, in radians, of an angle with the specified number of degrees.

Syntax

radians (<numeric>)

Parameters

<numeric>
is any exact numeric (numeric, dec, decimal, tinyint, smallint, Or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

Reference Manual: Building Blocks
302 PUBLIC Transact-SQL Functions

Examples

Example 1

Returns the size, in radians, of 2578:

select radians (2578)

Usage

® radians, a mathematical function, converts degrees to radians. Results are of the same type as
<numeric>.

e To express numeric or decimal datatypes, this function returns precision: 38, scale 18.

e \When money datatypes are used, internal conversion to f1oat may cause loss of precision.

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute radians.

Related Information

degrees [page 168]

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 303

3.127 rand

Returns a random float value between O and 1 using the specified (optional) integer as a seed value.

Syntax

rand ([<integer>])

Parameters

<integer>

isany integer (tinyint, smallint, or int) column name, variable, constant
expression, or a combination of these.

Examples

Example 1

Returns a random float value:

select rand()

0.395740
Example 2

Returns a random float value for a seed value of 100:

declare @seed int
select @seed=100
select rand(@seed)

0.000783

Usage

The rand function uses the output of a 32-bit pseudorandom integer generator. The integer is divided by the
maximum 32-bit integer to give a double value between 0.0 and 1.0. The rand function is seeded randomly at

Reference Manual: Building Blocks
304 PUBLIC Transact-SQL Functions

server start-up, so getting the same sequence of random numbers is unlikely, unless the user first initializes
this function with a constant seed value.

The rand function is a global resource.

Multiple users calling the rand function progress along a single stream of pseudorandom values. If a
repeatable series of random numbers is needed, the user must assure that the function is seeded with the
same value initially and that no other user calls rand while the repeatable sequence is desired.

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute rand.

Related Information

Approximate Numeric Datatypes [page 16]
rand2 [page 305]

3.128 rand2

Returns a random value between O and 1, which is generated using the specified seed value, and computed for
each returned row when used in the select list. Unlike rand, it is computed for each returned row when it is
used in the select list.

Syntax

rand2 ([<integer>])

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 305

Parameters

<integer>
is any integer (tinyint, smallint, or int) column name, variable, constant
expression, or a combination of these.
Examples
Example 1

If there are nrows is table t, the following select statement returns n different random values, not just one.

select rand2 () from t

Usage

® The behavior of rand2 in places other than the select listis undefined.

® The randand rand2 functions use the output of a 32-bit pseudorandom integer generator. The integer is
divided by the maximum 32-bit integer to give a double value between 0.0 and 1.0. and?2 is seeded
randomly at server start-up, so getting the same sequence of random numbers is unlikely, unless the user
first initializes this function with a constant seed value.
The rand2 function is a global resource.
Multiple users calling the rand2 function progress along a single stream of pseudorandom values. If a
repeatable series of random numbers is needed, the user must assure that the function is seeded with the
same value initially and that no other user calls rand while the repeatable sequence is desired.

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute rand?.

Reference Manual: Building Blocks
306 PUBLIC Transact-SQL Functions

Related Information

Approximate Numeric Datatypes [page 16]
rand [page 304]

3.129 replicate

Returns a string with the same datatype as <char expr>or <uchar expr> containing the same expression
repeated the specified number of times or as many times as fits into 16K, whichever is less.

Syntax

replicate (<char expr> | <uchar expr>, <i><nteger expr>)

Parameters

<char_expr>
is a character-type column name, variable, or constant expression of char, varchar,

nchar, orf nvarchar type.

<uchar_expr>

is a character-type column name, variable, or constant expression of unichar or

univarchar type.

<integer_ expr>
isany integer (tinyint, smallint, or int) column name, variable, or constant
expression.

Examples

Example 1

Returns a string consisting of "abcd" three times:

select replicate("abcd", 3)

abcdabcdabcd

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 307

Usage

If <char expr>or<uchar expr >is NULL, returns a single NULL.

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute replicate.

Related Information

stuff [page 400]

3.130 reserve_identity

reserve identity allows a process to reserve a block of identity values for use by that process.

Syntax

reserve identity (<table name>, <number of values>)

Parameters

<table name>

is the name of the table for which the reservation are made. The name can be fully
qualified; that is, it can include the <database name>, <owner name>, and
<object name> (in quotes).

<number_ of values>

Reference Manual: Building Blocks
308 PUBLIC Transact-SQL Functions

is the number of sequential identity values reserved for this process. This must be a
positive value that does not cause any of the reserved values to exceed the maximum

values for the datatype of the identity column.

Examples

Example 1

Describes a typical usage scenario for reserve identity, and assumes that tablel includes coll
(with a datatype of int) and a co12 (an identity column with a datatype of int). This process is for spid 3:

select reserve identity ("tablel",

Insert values for spids 3 and 4:

Insert tablel
Insert tablel
Insert tablel
Insert tablel
Insert tablel

values (56)
values (48)
values (96)
values (02)
values (84)

Select from table tablel:

select * from tablel

-> spid
-> spid
-> spid
-> spid
-> spid

reserved 1-5

gets next unreserved value
continues with reservation

W W ww

5

)

The result set shows that spid 3 reserved identity values 1 - 5, spid 4 receives the next unreserved value,

and then spid 3 reserves the subsequent identity values.

Usage

® After aprocess calls reserve identity toreserve the block of values, subsequent identity values
needed by this process are drawn from this reserved pool. When these reserved numbers are exhausted, or
if you insert data into a different table, the existing identity options apply. reserve identity canretain
more than one block of identity values, so if inserts to different tables are interleaved by a single process,

the next value in a table's reserved block is used.

Reserves a specified size block of identity values for the specified table, which are used exclusively by the
calling process. Returns the reserved starting number, and subsequent inserts into the specified table by
this process use these values. When the process terminates, any unused values are eliminated.

Reference Manual: Building Blocks

Transact-SQL Functions

PUBLIC 309

The sp_configure system procedure's “identity reservation size” parameter specifies a server-
wide limit on the value passed to the <number of values> parameter.
The returnvalue, <start value>, is the starting value for the block of reserved identity values. The calling
process uses this value for the next insert into the specified table

reserve_ identity allows a process to:

o Reserve identity values without issuing an insert statement.

o Know the values reserved prior issuing the insert statement

o “Grab” different size blocks of identity values, according to need.

o Better control “over gaps” by reserving only what is needed (that is, they are not restricted by preset

server grab size

Values are automatically used with no change to the insert syntax.

NULL values are returned if:

o A negative value or zero is specified as the block size.

o The table does not exist.

o The table does not contain an identity column.

If youissue reserve identity onatablein which this process has already reserved these identity
values, the function succeeds and the most recent group of values is used.
You cannot use reserve identity to reserve identity values on a proxy table. Local servers can use
reserve identity onaremote table if the local server calls a remote procedure that calls
reserve_identity. Because these reserved values are stored on the remote server but in the session
belonging to the local server, subsequent inserts to the remote table use the reserved values.
Ifthe identity gap is less than the reserved block size, the reservation succeeds by reserving the
specified block size (not an identity gap size) of values. If these values are not used by the process, this
results in potential gaps of up to the specified block size regardless of the identity gap setting.

See also sp configure in Reference Manual: Procedures.

Permissions

You must have insert permission on the table to reserve identity values. Permission checks do not differ
based on the granular permissions settings.

310

Reference Manual: Building Blocks
PUBLIC Transact-SQL Functions

Auditing

You can enable func_obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func_obj access 86 reserve identity ® Roles - Current active roles
® Keywords or options — RESERVE IDENTITY
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.131 reserved_pages

Reports the number of pages reserved for a database, object, or index. The result includes pages used for
internal structures.

This function replaces the reserved pgs function used in SAP ASE versions earlier than 15.0.

Syntax

reserved pages (<dbid>, <object id>[, <indid>[, <ptnid>]])

Parameters

<dbid>
is the database ID of the database where the target object resides.
<object_id>
is an object ID for a table.
<indid>
is the index ID of target index.
<ptnid>
is the partition ID of target partition.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 311

Examples

Example 1

Returns the number of pages reserved by the object with a object ID of 31000114 in the specified database
(including any indexes):

select reserved pages (5, 31000114)
Example 2

Returns the number of pages reserved by the object in the data layer, regardless of whether or not a
clustered index exists:

select reserved pages (5, 31000114, 0)
Example 3

Returns the number of pages reserved by the object in the index layer for a clustered index. This does not
include the pages used by the data layer:

select reserved pages (5, 31000114, 1)
Example 4

Returns the number of pages reserved by the object in the data layer of the specific partition, which in this
case is 2323242432:

select reserved pages (5, 31000114, 0, 2323242432)

Usage

e Use one of the following three methods to calculate space in a database with reserved pages:

o Use case expressions to select a value appropriate for the index you are inspecting, selecting all non-
log indexes in sysindexes for this database. In this query:

o The data has a value of “index 0", and is available when you include the statements when
sysindexes.indid = 0Or sysindexes.indid = 1.

© indid values greater than 1 for are indexes. Because this query does not sum the data space into
the index count, it does not include a page count for indid of O.

o Each object has an index entry for index of O or 1, never both.

o This query counts index O exactly once per table.

select

'data rsvd' = sum(case
when indid > 1 then 0
else reserved pages(db _id(), id, 0)
end),

'index rsvd' = sum(case
when indid = 0 then O
else reserved pages(db _id(), id, indid)
end)

from sysindexes

where id != 8

Reference Manual: Building Blocks
312 PUBLIC Transact-SQL Functions

data rsvd index rsvd

o Query sysindexes multiple times to display results after all queries are complete:

declare @data int,

@dbsize int,

@dataused int,

@indices int,

@indused int

select @data = sum(reserved pages(db_id(), id, 0)),
@dataused = sum(used pages(db_id(), id, 0))

from sysindexes

where id != 8

and indid <= 1

select @indices = sum(reserved pages(db id(), id, indid)),
@indused = sum(used pages(db id(), id, indid))

from sysindexes

where id != 8 and indid > 0

select @dbsize as 'db size',

@data as 'data rsvd'

db size data rsvd

o Query sysobjects for data space information and sysindexes for index information. From
sysobjects, select table objects: [S]ystem or [U]ser:

declare @data int,
@dbsize int,
@dataused int,
@indices int,
@indused int
select @data = sum(reserved pages(db id(), id, 0)),
@dataused = sum(used pages(db_id(), id, 0))
from sysobjects
where id != 8
and type in ('S', 'U'")
select @indices = sum(reserved pages(db id(), id, indid)),
@indused = sum(used pages(db id(), id, indid))
from sysindexes

where id != 8
and indid > 0
select @dbsize as 'db size',

@data as 'data rsvd',

@dataused as 'data used',
@indices as 'index rsvd',
@indused as 'index used'

db size data rsvd data used index rsvd index used

e |f aclustered index exists on an all-pages locked table, passing an index ID of O reports the reserved data
pages, and passing an index ID of 1 reports the reserved index pages. All erroneous conditions resultin a
value of zero being returned.

® reserved pages counts whatever you specify; if you supply a valid database, object, index (data is “index
0" for every table), it returns the reserved space for this database, object, or index. However, it can also
count a database, object, or index multiple times. If you have it count the data space for every index in a
table with multiple indexes, you get it counts the data space once for every index. If you sum these results,

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 313

you get the number of indexes multiplied by the total data space, not the total number of data pages in the
object.

® |nstead of consuming resources, reserved_pages discards the descriptor for an object that is not already
in the cache.

® reserved pages replacesthe reserved pgs function from versions of SAP ASE earlier than 15.0. These
are the differences between reserved pages and reserved pgs.

o In SAP ASE versions 12.5 and earlier, the SAP ASE server stored OAM pages for the data and index in
sysindexes. In SAP ASE versions 15.0 and later, this information is stored per-partition in
syspartions. Because this information is stored differently, reserved pages and reserved pgs
require different parameters and have different result sets.

o reserved pgs required a page ID. If you supplied a value that did not have a matching sysindexes
row, the supplied page ID was O (for example, the data OAM page of a nonclustered index row).
Because O was never a valid OAM page, if you supplied a page ID of O, reserved pgs returned O;
because the input value is invalid, reserved pgs could not count anything.

However, reserved pages requires an index ID, and O is a valid index ID (for example, data is “index
0" for every table). Because reserved pages can not tell from the context that you do not require it
to recount the data space for any index row except indid O or 1, it counts the data space every time you
pass O as an index ID. Because reserved pages counts this data space once per row, its yields a sum
many times the true value.
These differences are described as:
o reserved_ pgs does not affect the sum if you supply O as a value for the page ID for the OAM page
input; it just returns a value of O.
o Ifyousupply reserved pages with a value of O as the index ID, it counts the data space. Issue
reserved pages only when you want to count the data, or you affect the sum.

See also update statistics in Reference Manual: Commands.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute reserved pgs.

Reference Manual: Building Blocks
314 PUBLIC Transact-SQL Functions

Auditing

You can enable func_obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func_obj access 86 reserved_pages ® Roles — Current active roles
® Keywords or options — RESERVED PAGES
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Related Information

data_pages [page 132]
reserved_pages [page 311]
row_count [page 329]
used_pages [page 386]

3.132 return_lob

Dereferences a locator, and returns the LOB referenced by that locator.

Syntax

return lob (<datatype>, <locator descriptor>)

Parameters

<datatype>
is the datatype of the LOB. Valid datatypes are:

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

315

® text

® unitext

® image
<locator_descriptor>

is a valid representation of a LOB locator: a host variable, a local variable, or the literal

binary value of a locator.

Examples

Example 1

This example dereferences the locator and returns the LOB referenced by the literal locator value
0x9067ef4501000000001000000040100400800000000.

return lob (text, locator literal (text locator,
0x9067e£4501000000001000000040100400800000000))

Usage

return loboverridesthe set send locator oncommand, and always returns a LOB.

See also deallocate locator, truncate lob in Reference Manual: Commands.

Permissions

Any user can execute return_lob.

Related Information

create_locator [page 123]
locator_literal [page 236]
locator_valid [page 237]

Reference Manual: Building Blocks
316 PUBLIC Transact-SQL Functions

3.133 reverse

Returns the specified string with characters listed in reverse order.

Syntax

reverse (<expression >| <uchar expr>)

Parameters

<expression>

is a character or binary-type column name, variable, or constant expression of char,

varchar, nchar, nvarchar, binary, Or varbinary type.

<uchar_expr>

is a character or binary-type column name, variable, or constant expression of

unichar or univarchar type.

Examples

Example 1

Returns "abcd" in reverse:

select reverse ("abcd")

dcba

Example 2

Returns the reverse of 0x12345000:

select reverse (0x12345000)

0200503412

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

317

Usage

® reverse, astring function, returns the reverse of <expression>.
® |f<expression>is NULL, reverse returns NULL.
e Surrogate pairs are treated as indivisible and are not reversed.

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute reverse.

Related Information

lower [page 248]
upper [page 426]

3.134 right

Returns the part of the character or binary expression starting at the specified number of characters from the
right. Return value has the same datatype as the character expression.

Syntax

right (<expression>, <integer expr>)

Parameters

<expression>

Reference Manual: Building Blocks
318 PUBLIC Transact-SQL Functions

is a character or binary-type column name, variable, or constant expression of char,

varchar, nchar, unichar, nvarchar, univarchar, binary, Orvarbinary
type.

<integer expr>
isany integer (tinyint, smallint, or int) column name, variable, or constant
expression.

Examples

Example 1

Returns the part of "abcde" starting at three characters from the right:

select right ("abcde", 3)

cde
Example 2

Returns the part of "abcde" starting at two characters from the right:

select right ("abcde", 2)

de
Example 3

Returns the part of "abcde" starting at six characters from the right:

select right ("abcde", 6)

Example 4

Returns the part of "Ox12345000" starting at three characters from the right:

select right (0x12345000, 3)

0x345000
Example 5

Returns the part of "0x12345000" starting at two characters from the right:

select right (0x12345000, 2)

0x5000

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

319

Example 6

Returns the part of "Ox12345000" starting at six characters from the right:

select right (0x12345000, 6)

0x12345000

Usage

® right, astring function, returns the specified number of characters from the rightmost part of the
character or binary expression.

e |f the specified rightmost part begins with the second surrogate of a pair (the low surrogate), the return
value starts with the next full character. Therefore, one less character is returned.

e The return value has the same datatype as the character or binary expression.
® |f<expression>is NULL, right returns NULL.

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension

Permissions

Any user can execute right.

Related Information

rtrim [page 332]
substring [page 402]

Reference Manual: Building Blocks
320 PUBLIC Transact-SQL Functions

3.135 rm_appcontext

Removes a specific application context, or all application contexts. rm_appcontext is provided by the
Application Context Facility (ACF).

Syntax

rm_appcontext (“<context name>”, “<attribute name>")

Parameters

<context name>

is a row specifying an application context name. It is saved as datatype char (30).

<attribute_ name>

is a row specifying an application context attribute name. It is saved as datatype
char (30).

Examples

Example 1

Removes an application context by specifying some or all attributes:

select rm appcontext ("CONTEXT1", "*")

select rm appcontext ("*", "*'")

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

321

Example 2

Shows the result when a user without appropriate permissions attempts to remove an application context:

select rm appcontext ("CONTEXTL", "ATTR2")

Usage

e This function always returns O for success.
e All the arguments for this function are required.

For more information on the ACF see Row-Level Access Control in System Administration Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

The permission checks for rm_appcontext differ based on your granular permissions settings.

Granular Description
Permissions

Enabled With granular permissions enabled, you must have select permission on

rm_appcontext to execute the function.

Disabled With granular permissions disabled, you must be a user with sa_role, or have select

permission on rm_appcontext to execute the function.

Related Information

get_appcontext [page 183]
list_appcontext [page 234]
set_appcontext [page 335]

Reference Manual: Building Blocks
322 PUBLIC Transact-SQL Functions

3.136 role_contain

Determines whether a specified role is contained within another specified role.

Syntax

role contain("<rolel>", "<role2>")

Parameters

<rolel>
is the name of a system or user-defined role.
<role2>

is the name of another system or user-defined role.

Examples

Example 1

Determines whether intern_role is contained within doctor_role:

select role contain("intern role", "doctor role")

Example 2

Determines whether specialist_role is contained within intern_role:

select role contain("specialist role", "intern role")

Usage

role contain, asystem function, returns 1if <rolel>is contained by <role2>. Otherwise, role_contain
returns O.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 323

See also:

® alter roleinReference Manual: Commands

e For more information about contained roles and role hierarchies, see the System Administration Guide. For

system functions, see Transact-SQL Users Guide.
® sp activeroles, sp displayroles in Reference Manual: Procedures

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute role contain.

Related Information

mut_excl_roles [page 262]
proc_role [page 298]
role_id [page 324]
role_name [page 326]

3.137 role_id

Returns the role ID of the specified role name.

Syntax

role id("<role name>")

Parameters

<role_name>

324 PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

is the name of a system or user-defined role. Role names and role IDs are stored in the
syssrvroles system table.

Examples

Example 1

Returns the system role ID of sa_role:

select role id("sa role")

Example 2

Returns the system role ID of the intern_role:

select role id("intern role")

Usage

® role id, asystem function, returns the systemrole ID (srid). System role IDs are stored in the srid
column of the syssrvroles system table.
® |[fthe <role name>isnota validrole in the system, the SAP ASE server returns NULL.

See also:

® Roles — see the System Administration Guide
e System functions — see Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute role id.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 325

Related Information

mut_excl_roles [page 262]
proc_role [page 298]
role_contain [page 323]
role_name [page 326]

3.138 role_name

Returns the role name of the specified role ID.

Syntax

role name (<role id>)

Parameters

<role_id>

is the system role ID (srid) of the role. Role names are stored in syssrvroles.

Examples

Example 1

Returns the role name of ID 01:

select role name (01)

Usage

See also Transact-SQL Users Guide.

Reference Manual: Building Blocks
326 PUBLIC Transact-SQL Functions

Standards

ANSI SQL - Compliance level: Transact-SQL extension

Permissions

Any user can execute role name.

Related Information

mut_excl_roles [page 262]
proc_role [page 298]
role_contain [page 323]
role_id [page 324]

3.139 round

Returns the value of the specified number, rounded to the specified number of decimal places.

Syntax

round (<number>, <decimal places>)

Parameters

<number>

is any exact numeric (numeric, dec, decimal, tinyint, smallint, int, orbigint),

approximate numeric (float, real, or double precision), money column, variable,
constant expression, or a combination of these.

<decimal places>

is the number of decimal places to round to.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

327

Examples

Example 1

Returns the value of 123.4545, rounded to 2 decimal places:

select round(123.4545, 2)

123.4500
Example 2

Returns the value of 123.45, rounded to -2 decimal places:

select round(123.45, -2)

Example 3

Returns the value of 1.2345E2, rounded to 2 decimal places:

select round(1.2345E2, 2)

123.450000
Example 4

Returns the value of 1.2345E2, rounded to -2 decimal places:

select round(1.2345E2, -2)

100.000000

Usage

328

round, a mathematical function, rounds the <number> so that it has <decimal places> significant
digits.

A positive value for <decimal places> determines the number of significant digits to the right of the
decimal point; a negative value for <decimal places> determines the number of significant digits to the
left of the decimal point.

Results are of the same type as <number> and, for numeric and decimal expressions, have an internal
precision equal to the precision of the first argument plus 1 and a scale equal to that of <number>.

round always returns a value. If <decimal places> is negative and exceeds the number of significant
digits specified for <number>, the SAP ASE server returns O. (This is expressed in the form 0.00, where the

Reference Manual: Building Blocks
PUBLIC Transact-SQL Functions

number of zeros to the right of the decimal point is equal to the scale of numeric.) For example, the
following returns a value of 0.00:

select round(55.55, -3)

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute round.

Related Information

abs [page 59]
ceiling [page 89]
floor [page 180]
sign [page 364]
str [page 393]

3.140 row_count

Returns an estimate of the number of rows in the specified table.

Syntax

row count (<dbid>, <object id> [,<ptnid>] [, "<option>"])

Parameters

<dbid>

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 329

is the database ID where target object resides.

<object_id>

is the object ID of table.

<ptnid>

is the partition ID of interest.

<option>

allows you to limit the scope of the information returned. One of:

® 1 - suppresses auditing.

® rowcompressed — returns the number of row-compressed rows

® pagecompressed — returns the number of page-compressed rows
® uncompressed — returns the number of uncompressed rows

® compressed — returns the number of compressed rows

The in-memory row storage (IMRS) supports these options:

® imrs inserted rows - returns the number of inserted rows that are still in
memory. For example, if there are initially 1000 in memory, and 500 were packed
later, sonow imrs_inserted rows would return 500.

® imrs migrated rows —returnsthe number of migrated rows.

® imrs inserted del rows - returnsthe number of inserted rows that are
committed, then deleted, but remain in the IMRS.

® imrs migrated del rows — returnsthe number of migrated rows that are
committed, then deleted, but remain in the IMRS.

See In-Memory Database Users Guide > In-Memory Row Storage for a discussion of
types of rows (inserted, migrated, and cached) in the IMRS.

Examples

330

Example 1

Returns an estimate of the number of rows in the given object:

select row count (5, 31000114)
Example 2

Returns an estimate of the number of rows in the specified partition (with partition ID of 2323242432) of
the object with object ID of 31000114

select row count (5, 31000114, 2323242432)
Example 3

Returns an estimate of the number of rows in the specified partition from an in-memory enabled table
(with an object ID of 12, a partition ID of 56000997, and an object ID of 56000997

select row count (12, 292556, 56000997, 'imrs migrated rows')

Reference Manual: Building Blocks
PUBLIC Transact-SQL Functions

Usage

e All erroneous conditions return in a value of zero being returned.
® Thesumofthe row count inserted, migratedand cached options should equal the row count
returned by the in imrs option

® imrs inserted rows returns the number of inserted rows that are still in memory. For example, if there
are initially 1000 inserted rows that are in-memory, but 500 of these are packed, imrs_inserted rows
returns a value of 500.

® Therows row_count returns include all rows in the in-memory row storage.

e |nstead of consuming resources, row_count discards the descriptor for an object that is not already in the
cache.

Standards

ANSI SQL — Compliance level: Transact-SQL extension

Permissions

Any user can execute row_count.

Auditing

You can enable func obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event = Command or access audited Information in extrainfo:

func_obj access 86 row_count ® Roles - Current active roles
® Keywords or options — ROW_COUNT
® Previous value — NULL
® Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 331

Related Information

reserved_pages [page 311]
used_pages [page 386]

3.141 rtrim

Trims the specified expression of trailing blanks.

Syntax

<uchar expr>)

rtrim(<char expr>

Parameters

<char_expr>
is a character-type column name, variable, or constant expression of char, varchar,

nchar, or nvarchar type.

<uchar_expr>
is a character-type column name, variable, or constant expression of unichar or

univarchar type.

Examples

Example 1

Trims the trailing blanks off after "abcd":

select rtrim("abcd ")

Reference Manual: Building Blocks
332 PUBLIC Transact-SQL Functions

Usage

® For Unicode, a blank is defined as the Unicode value U+0020.
® |[f<char expr>or<uchar expr>is NULL, returns NULL
e Only values equivalent to the space character in the current character set are removed.

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute rtrim.

Related Information

ltrim [page 255]

3.142 sdc_intempdbconfig

(Cluster environments only) Returns 1 if the system is currently in temporary database configuration mode; if
not, returns O.

Syntax

sdc_intempdbconfig ()

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 333

Examples

Example 1

Displays whether the system is in temporary database configuration mode or not:

select sdc_intempdbconfig ()

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute sdc_intempdbconfig

3.143 session_context

Returns the value of <session variable> assigned to the current session.

Syntax

session context (<session variable>)

Parameters

<session_variable>

is the name of session variable.

Examples

Example 1

Returns the value of the application variable for the current session.

334 PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

Declare session variable session 12 and setits value to ase session:

set 'session 12' = 'ase session'

Returns the value for the session variable:

select session context ('session 12'")

ase session

Usage

® The maximum length for the value is 512 characters.

Permissions

The permission checks for session_ context differ based on your granular permissions settings.

Granular Description
Permissions
Enabled With granular permissions enabled, you must have select permission on
session_context to execute the function.

Disabled With granular permissions disabled, you must be a user with sa_role, or have select

permission on session_context to execute the function.

3.144 set_appcontext

Sets an application context name, attribute name, and attribute value for a user session, defined by the
attributes of a specified application. set_appcontext is a provided by the Application Context Facility (ACF).

Syntax
set appcontext (“<context name>, “<attribute name>”, “<attribute value>")

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 335

Parameters

<context name>

is a row that specifies an application context name. It is saved as the datatype
char (255).

<attribute_ name>

is a row that specifies an application context attribute name. It is saved as the datatype
char (255).

<attribute_ value>

is a row that specifies and application attribute value. It is saved as the datatype
char (512).

Examples

Example 1

Creates an application context called CONTEXT]L, with an attribute ATTR1 that has the value VALUEL.

select set appcontext ("CONTEXT1", "ATTR1", "VALUEL")

Example 2

Shows set_appcontext including a datatype conversion in the value.

declare@numericvarchar varchar (25)

select @numericvar = "20"

select set appcontext ("CONTEXT1", "ATTR2",
convert (char (20), @numericvar))

Example 3

Shows the result when a user without appropriate permissions attempts to set the application context.

select set appcontext ("CONTEXT1", "ATTR2", "VALUEL")

Usage

® set appcontext returns O for success and -1 for failure.

Reference Manual: Building Blocks
336 PUBLIC Transact-SQL Functions

e |f you set values that already exist in the current session, set _appcontext returns -1.

e This function cannot override the values of an existing application context. To assign new values to a
context, remove the context and re-create it using new values.

® set appcontext saves attributes as char datatypes. If you are creating an access rule that must
compare the attribute value to another datatype, the rule should convert the char data to the appropriate
datatype.

e All the arguments for this function are required.

e For more information on the Application Context Facility see Security Administration Guide > Getting
Started with Security Administration in Adaptive Server > Security features in Adaptive Server >
Discretionary access control.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

The permission checks for set _appcontext differ based on your granular permissions settings.

Granular Description
Permissions
Enabled With granular permissions enabled, you must have select permission on

set_appcontext to execute the function.

Disabled With granular permissions disabled, you must be a user with sa_role, or have select
permission on set appcontext to execute the function.

Related Information

get_appcontext [page 183]
list_appcontext [page 234]
rm_appcontext [page 321]

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 337

3.145 setdata

Overwrites some or all of a large object (LOB).

Syntax

setdata (<locator name>, <offset value>, <new value>)

Parameters

<locator_name>
is a locator that references the LOB value you are modifying.
<offset_value>

is a position within the LOB to which <locator name> points. This is the position
where the SAP ASE server begins writing the contents of <new value>. The value for
<offset value>isincharacters for text locator andunitext locator,andin
bytes for image locator. The first character or byte of the LOB has an

<offset value>ofl.

<new_value>

is the data with which you are overwriting the old data.

Examples

Example 1

The final select statement in this example returns the string “SAP ABC/IQ/ASA" instead of the original
string, “SAP “ASE/IQ/ASA":

declare @v text locator
select @v = create locator
(text locator, convert (text, "SAP ASE/IQ/ASA")
select setdata(@v, 8, "ABC")
select return lob (text, @v)

Usage

® setdata modifies the LOB value in-place. That is, the SAP ASE server does not copy the LOB before it is
modified.

Reference Manual: Building Blocks
338 PUBLIC Transact-SQL Functions

e [fthe length of <new value> islonger than the remaining length of the LOB after skipping the
<offset value>, the SAP ASE server extends the LOB to hold the entire length of <new value>.

e |[fthe sumof <new value>and<offset value>isshorter than the length of the LOB, the SAP ASE
server does not change or truncate the data at the end of the LOB.

® setdatareturns NULL ifthe <offset value> islonger than the LOB value you are updating.

Seealsodeallocate locator, truncate lob in Reference Manual: Commands.

Permissions

Any user can execute setdata.

Related Information

create_locator [page 123]
locator_valid [page 237]
return_lob [page 315]

3.146 show_cached_plan_in_xml

Displays, in XML, the executing query plan for queries in the statement cache.

show cached plan_in xml returns sections of the showplan utility output in XML format.

Syntax

show cached plan in xml (<statement id>, <plan id>, [<level of detail>])

Parameters

<statement_id>

is the object ID of the lightweight procedure. A lightweight procedure is one that can be
created and invoked internally by the SAP ASE server. This is the sSQLID column from
monCachedStatement, which contains a unique identifier for each cached statement.

<plan_id>

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

339

is the unique identifier for the plan. This is the P1lanID from monCachedProcedures. A
value of zero for <plan id> displays the showplan output for all cached plans for the
indicated SSQLID.

<level of detail>

is avalue from O - 6 indicating the amount of detail show cached plan in xml
returns, and determines which sections of showplan are returned by
show cached plan in xml. The default valueis O.

Table 15: Level of Detail

<level of detail> Parameter opTree execlree
0 (the default) X X

1 X

2 X

3 X

4 X X

5 X X

6 X X X

The output of show _cached plan_in_ xml includesthe <plan id>andthese
sections:

® parameter — contains the parameter values used to compile the query and the
parameter values that caused the slowest performance. The compile parameters
are indicated with the <compileParameters>and </compileParameters>
tags. The slowest parameter values are indicated with the <execParameters> and
</execParameters> tags. For each parameter, show cached plan in xml

displays the:
© Number
o Datatype

o Value — values that are larger than 500 bytes and values for insert-value
statements do not appear. The total memory used to store the values for all
parameters is 2KB for each of the two parameter sets.

Examples

Example 1

Shows a query plan rendered in XML:

select show cache plan in xml (1328134997, 0)
go

Reference Manual: Building Blocks
340 PUBLIC Transact-SQL Functions

<?xml version="1.0" encoding="UTF-8"?>
<query>
<statementId>1328134997</statementId>
<text>
<! [CDATA[SQL Text: select name from sysobjects where id = 10]]>
</text>
<plan>
<planId>11</planId>
<planStatus> available </planStatus>
<execCount>1371</execCount>
<maxTime>3</maxTime>
<avgTime>0</avgTime>
<compileParameters/>
<execParameters/>
<opTree>
<Emit>
<VA>1</VA>
<est>
<rowCnt>10</rowCnt>
<lio>0</lio>
<pio>0</pio>
<rowSz>22.54878</rowSz>
</est>
<act>
<rowCnt>1</rowCnt>
</act>
<arity>1</arity>
<IndexScan>
<VA>0</VA>
<est>
<rowCnt>10</rowCnt>
<lio>0</lio>
<pio>0</pio>
<rowSz>22.54878</rowSz>
</est>
<act>
<rowCnt>1</rowCnt>
<lio>3</lio>
<pio>0</pio>
</act>
<varNo>0</varNo>
<objName>sysobjects</objName>
<scanType>IndexScan</scanType>
<indName>csysobjects</indName>
<indId>3</indId>
<scanOrder> ForwardScan </scanOrder>
<positioning> ByKey </positioning>
<perKey>
<keyCol>id</keyCol>
<keyOrder> Ascending </keyOrder>
</perKey>
<indexIOSizeInKB>2</indexI0OSizeInKB>
<indexBufReplStrategy> LRU </indexBufReplStrategy>
<dataIOSizeInKB>2</datalOSizeInKB>
<dataBufReplStrategy> LRU </dataBufReplStrategy>
</IndexScan>
</Emit>
</opTree>
</plan>

Example 2

Shows enhanced <est>, <act>, and <scanCoverage> tags available in 15.7.1 and later versions of SAP
ASE:

select show cached plan in xml (1123220018, O0)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 341

go

<?xml version="1.0" encoding="UTF-8"?>

<query>
<statementId>1123220018</statementId>
<text>
<! [CDATA [
SQL Text: select distinct cl, c¢2 from tl, t2 where cl = dl PLAN
'(distinct hashing (nl join (t scan t2) (i scan iltl €1)))']]>
</text>
<plan>
<planId>6</planId>

<planStatus> available </planStatus>
<execCount>1</execCount>
<maxTime>16</maxTime>
<avgTime>16</avgTime>
<compileParameters/>
<execParameters/>
<opTree>
<Emit>
<VA>4</VA>
<est>
<rowCnt>1</rowCnt>
<lio>0</lio>
<pio>0</pio>
<rowSz>10</rowSz>
</est>
<arity>1l</arity>
<HashDistinct>
<VA>3</VA>
<est>
<rowCnt>1</rowCnt>
<lio>5</lio>
<pio>0</pio>
<rowSz>10</rowSz>
</est>
<arity>1</arity>
<WorkTable>
<wtObjName>WorkTablel</wtObjName>
</WorkTable>
<NestLoopJoin>
<VA>2</VA>
<est>
<rowCnt>1</rowCnt>
<lio>0</1lio>
<pio>0</pio>
<rowSz>10</rowSz>
</est>
<arity>2</arity>
<TableScan>
<VA>0</VA>
<est>
<rowCnt>1</rowCnt>
<lio>1</lio>
<pi0>0.9999995</pio>
<rowSz>6</rowSz>
</est>
<varNo>0</varNo>
<objName>t2</objName>
<scanType>TableScan</scanType>
<scanOrder> ForwardScan </scanOrder>
<positioning> StartOfTable </positioning>
<scanCoverage> NonCovered </scanCoverage>
<dataIOSizeInKB>16</datalOSizeInKB>
<dataBufReplStrategy> LRU </dataBufReplStrategy>
</TableScan>
<IndexScan>

Reference Manual: Building Blocks
342 PUBLIC Transact-SQL Functions

<VA>1</VA>
<est>
<rowCnt>1</rowCnt>
<lio>0</lio>
<pio>0</pio>
<rowSz>10</rowSz>
</est>
<varNo>1</varNo>
<objName>t1l</objName>
<scanType>IndexScan</scanType>
<indName>iltl</indName>
<indId>1</indId>
<scanOrder> ForwardScan </scanOrder>
<positioning> ByKey </positioning>
<scanCoverage> NonCovered </scanCoverage>
<perKey>
<keyCol>cl</keyCol>
<keyOrder> Ascending </keyOrder>
</perKey>
<dataIOSizeInKB>16</datalOSizeInKB>
<dataBufReplStrategy> LRU </dataBufReplStrategy>
</IndexScan>
</NestLoopJdoin>
</HashDistinct>
</Emit>
<est>
<totalLio>6</totalLio>
<totalPio>0.9999995</totalPio>
</est>
<act>
<totallLio>0</totalLio>
<totalPio>0</totalPio>
</act>
</opTree>
</plan>
</query>

Usage

® Enable the statement cache before you use show cached plan in xml.

® Use show cached plan in_ xml for cached statements only.

® The plan does not printif itis in use. Plans with the status of available print plan details. Plans with the
status of in use show only the process ID.

Permissions

The permission checks for show cached plan_in xml differ based on your granular permissions settings.

Granular Description
Permissions

Enabled With granular permissions enabled, you must be a user withmon_role, or have

monitor gp performance permission to execute show cached plan_in xml.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 343

Granular Description

Permissions
Disabled With granular permissions disabled, you must be a user withmon_role or sa_roleto
execute show cached plan in xml.
Auditing

You can enable security auditing option to audit this function. Values in event and extrainfo columns
from the sysaudits table are:

Audit option Event Command or access audited Informationinextrainfo:
security 86 show cached plan in xm ©® Roles~Currentactiveroles
1 ® Keywords or options —

SHOW CACHED PLAN IN XML
® Previous value — NULL
® Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.147 show_cached_text

Displays the SQL text of a cached statement.

Syntax

show cached text (<statement id>)

Parameters

<statement_id>

is the ID of the statement. Derived from the SSQLID column of monCachedStatement.

Reference Manual: Building Blocks
344 PUBLIC Transact-SQL Functions

Examples

Example 1

Displays the contents of monCachedstatement, then uses the show cached text function to show the
SQL text:

select InstanceID, SSQLID, Hashkey, UseCount, StmtType
from monCachedStatement

InstanceID SSQLID Hashkey UseCount StmtType
0 329111220 1108036110 0 2
0 345111277 1663781964 1 1

select show cached text (329111220)

select id from sysroles

Usage

® show cached text displays up to 16K of SQL text, and truncates text longer than 16K. Use
show_cached text long for text longer than 16K.

® show cached text returns avarchar datatype.

Permissions

The permission checks for show cached text differ based onyour granular permissions settings.

Granular Description
Permissions

Enabled With granular permissions enabled, you must be a user withmon_role, or have

monitor gp performance permission to execute show cached text.

Disabled With granular permissions disabled, you must be a user withmon_role or sa_roleto

execute show cached text.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 345

Auditing

You can enable security auditing option to audit this function. Values in event and extrainfo columns
from the sysaudits table are:

Audit option Event = Command or access audited Information in extrainfo:

security 86 show cached text ® Roles - Current active roles
® Keywords or options — SHOW_CACHED_ TEXT
® Previous value — NULL
® Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.148 show_cached_text_long

Displays the SQL text for cached statements longer than 16K.

Syntax

show cached text long(<statement id>)

Parameters

<statement_id>

is the ID of the statement. Derived from the SSQLID column of monCachedStatement.

Reference Manual: Building Blocks
346 PUBLIC Transact-SQL Functions

Examples

Example 1
This selects the SQL text from the monCachedStatement monitoring table (the result set has been
shortened for easier readability):

select show cached text long(SSQLID) as sgl text, StatementSize from
monCachedStatement

StatementSize

SELECT first column
188888

Usage

® show cached text longdisplays up to 2M of SQL text.

® show cached text longreturnsa text datatype.

® Using show cached text long requiresyou to configure set textsize <value> atalarge value. If
you configure a value that is too small, SAP ASE clients (for example, isgl) truncate the

show cached text long result set.

Permissions

The permission checks for show cached text long differ based on your granular permissions settings.

Granular Description
Permissions
Enabled With granular permissions enabled, you must be a user withmon_role, or have

monitor gp performance permission to execute show cached text long.

Disabled With granular permissions disabled, you must be a user withmon_role or sa_roleto

execute show cached text long.

Reference Manual: Building Blocks

Transact-SQL Functions PUBLIC 347

Auditing

You can enable func obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event = Command or access audited Information in extrainfo:

security 86 show cached text long ® Roles - Current active roles
® Keywords or options —
SHOW CACHED TEXT LONG
® Previous value — NULL
® Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.149 show_condensed_text

Returns the unified SQL text for cached statements.

Syntax

show condensed text (<statement id, option>)

Parameters

<statement_ id>

is ID of the statement. Derived from the SSQLID column of monCachedStatement.
<option>

is a string constant, enclosed in quotes. One of:

e text —returns the condensed text
® hash — return the hash value for the condensed text

Reference Manual: Building Blocks
348 PUBLIC Transact-SQL Functions

Examples

Example 1

displays condensed text for cached SQL text:

select show condensed text (SSQLID, 'text') from monCachedStatement
SELECT SHOW CONDENSED TEXT (SSQLID, $) FROM monCachedStatement
Example 2

displays the hash value of the condensed text for cached SQL text: 1:

select show condensed text (SSQLID, 'hash') from monCachedStatement

1331016445

Usage

show condensed text:

® Returns a text datatype
e Supports long SQL text (greater than 16KB)
e Returns NULL for invalid <option> values

Permissions

The permission checks for show condensed text depend on your granular permissions settings:
e Granular permissions enabled — you must have the mon_role, orhavemonitor gp performance
permission to execute show _condensed_text.

e Granular permissions disabled — you must have themon roleor sa role to execute

show condensed text.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 349

Auditing

You can enable security auditing option to audit this function. Values in event and extrainfo columns
from the sysaudits table are:

Audit option Event = Command or access audited Information in extrainfo:

security 86 show condensed_text ® Roles - Current active roles
® Keywords or options —
SHOW CONDENSED TEXT
® Previous value — NULL
® Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.150 show_dynamic_params_in_xml

Returns parameter information for a dynamic SQL query (a prepared statement) in XML format.

Syntax

show dynamic params in xml (<object id>)

Parameters

<object_id>
ID of the dynamic, SQL lightweight stored procedure you are investigating. Usually the
return value of the <@@plwpid> global variable.

Reference Manual: Building Blocks
350 PUBLIC Transact-SQL Functions

Examples

Example 1

In this example, first find the object ID:

select @@plwpid

707749902

Then use the ID as the input parameter for show dynamic params_in xml:

select show dynamic params in xml (707749902)

<?xml version="1.0" encoding="UTF-8"?>

<query>
<parameter>
<number>1</number>
<type>INT</type>
<column>tab.coll</column>
</parameter>
</query>
Parameter Value Definition
number 1 Dynamic parameter is in the statement’s first position
type INT Table uses the int datatype
column tab.coll Query use the col1 column of the tab table
Usage

® show dynamic params_ in xml allows dynamic parameters in where clauses, the set clause of an
update, and the <values> list of an insert.

® Forwhere clauses, show dynamic params_in_xml determines associations according to the smallest
subtree involving an expression with a column, a relational operator, and an expression with a parameter.
For example:

select * from tab where coll + 1 = ?
If the query has no subtree, show dynamic_params in_ xml omits the <column> element. For example:

select * from tab where ? < 1000

® show dynamic params in xml Selects the first column it encounters for expressions involving multiple
columns:

delete tab where coll + col2 > ?

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 351

® The association is unambiguous for update . . . set statements. For example:

update tab set coll = ?

3.151 show_plan

Displays a cached plan from the procedure cache. This function is called several times by sp_showplan
because a built-in function can return just one value per call, but sp_showplan must return several values to
the client.

Syntax

show plan (<DBID>, <procedure ID>, <plan ID> [, <statement number>])

Parameters

<DBID>

unique identifier for the database in which the object exists.
<procedure_ ID>

ID of the procedure that is running.
<plan_ID>

unique identifier for the query plan for the object in the procedure cache. Use a value of
0 to display the first valid plan.

<statement number>

is the number of the current statement within a batch. Use a value of -1 to display all
plans for all statements.

i Note

The values you include can change how show_plan interprets the parameters. If you include:

e Avalue of O for the first parameter (for example, show plan (0, 27, 237)), show_plan treats the
2nd parameter as the statement ID for the cached statements, and retrieves a cached plan from the
procedure cache.

® Anegative value for the 1st parameter (for example, show plan (-2, 27, 237)), show plan treats
the 1st parameter as the DBID multiplied by -1, the 2nd parameter as the <procedure ID> for the
cached statements, the 3rd parameter as the <plan 1D>, and the 4th parameter as
<statement number>, and retrieves a cached plan from the procedure cache.

Reference Manual: Building Blocks
352 PUBLIC Transact-SQL Functions

Examples

Example 1
displays the cached query plan for the procedure with:

e DatabaseID -4

® Procedure ID - 1056003762
e PlaniID-0

e Statement number -1

select show plan (-4,1056003762, 0, -1)
QUERY PLAN FOR STATEMENT 1 (at line 2).
Optimized using Serial Mode
STEP 1
The type of query is SELECT.
2 operator(s) under root
|[ROOT:EMIT Operator (VA = 2)
|
SCALAR AGGREGATE Operator (VA = 1)
Evaluate Ungrouped COUNT AGGREGATE.

| |
| |
| |
| | | SCAN Operator (VA = 0)
| | | FROM TABLE
| | | sysobjects
| | | Index : ncsysobjects
| | | Forward Scan.
| | | Positioning at index start.
| | | Index contains all needed columns. Base table will not be
read.

| | | Using I/0 Size 16 Kbytes for index leaf pages.

| | | With LRU Buffer Replacement Strategy for index leaf pages.

QUERY PLAN FOR STATEMENT 2 (at line 3).
Optimized using Serial Mode
STEP 1
The type of query is SELECT.
1 operator(s) under root
|[ROOT:EMIT Operator (VA = 1)
|
| | SCALAR Operator (VA = 0)
QUERY PLAN FOR STATEMENT 3 (at line 4).
STEP 1
The type of query is SET OPTION ON.
QUERY PLAN FOR STATEMENT 4 (at line 5).
Optimized using Serial Mode
STEP 1
The type of query is SELECT.
1 operator(s) under root
|[ROOT:EMIT Operator (VA = 1)
|
| | SCALAR Operator (VA = 0)
QUERY PLAN FOR STATEMENT 5 (at line 6).
STEP 1
The type of query is SET OPTION OFF.
QUERY PLAN FOR STATEMENT 6 (at line 7).
Optimized using Serial Mode
STEP 1
The type of query is SELECT.
2 operator(s) under root
|[ROOT:EMIT Operator (VA = 2)
|
| | SCALAR AGGREGATE Operator (VA = 1)
| | Evaluate Ungrouped COUNT AGGREGATE.
| |

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

353

SCAN Operator (VA = 0)
FROM TABLE
syscomments
Using Clustered Index.
Index : csyscomments
Forward Scan.
Positioning at index start.
Index contains all needed columns. Base table will not be

read.
| | | Using I/0 Size 16 Kbytes for index leaf pages.
| | | With LRU Buffer Replacement Strategy for index leaf pages.
0
(1 row affected)
sglsa command {select show plan (-4,1056003762, 0, 1)}
select show plan (-4,1056003762, 0, 1)

QUERY PLAN FOR STATEMENT 1 (at line 2).
Optimized using Serial Mode
STEP 1
The type of query is SELECT.
2 operator(s) under root
|[ROOT:EMIT Operator (VA = 2)
|
SCALAR AGGREGATE Operator (VA = 1)
Evaluate Ungrouped COUNT AGGREGATE.

| |
| |
| |
| | | SCAN Operator (VA = 0)
| | | FROM TABLE
| | | sysobjects
| | | Index : ncsysobjects
| | | Forward Scan.
| | | Positioning at index start.
| | | Index contains all needed columns. Base table will not be
read.

| | | Using I/O Size 16 Kbytes for index leaf pages.

| | | With LRU Buffer Replacement Strategy for index leaf pages.
0
(1 row affected)
sglsa command {select show plan (-4,1056003762, 0, 2)}
select show plan (-4,1056003762, 0, 2)

QUERY PLAN FOR STATEMENT 2 (at line 3).
Optimized using Serial Mode
STEP 1
The type of query is SELECT.
1 operator(s) under root
|[ROOT:EMIT Operator (VA = 1)
|
| | SCALAR Operator (VA = 0)
0
(1 row affected)
show plan with plan id and various line number:
select show plan (-4,1056003762, 84, -1)

QUERY PLAN FOR STATEMENT 1 (at line 2).
Optimized using Serial Mode
STEP 1
The type of query is SELECT.
2 operator(s) under root
|[ROOT:EMIT Operator (VA = 2)
|
| | SCALAR AGGREGATE Operator (VA = 1)
| | Evaluate Ungrouped COUNT AGGREGATE.
| |
| | | SCAN Operator (VA = 0)

Reference Manual: Building Blocks
354 PUBLIC Transact-SQL Functions

| | | FROM TABLE
| | | sysobjects
| | | Index : ncsysobjects
| | | Forward Scan.
| | | Positioning at index start.
| | | Index contains all needed columns. Base table will not be
read.
| | | Using I/O Size 16 Kbytes for index leaf pages.
| | | With LRU Buffer Replacement Strategy for index leaf pages.
QUERY PLAN FOR STATEMENT 2 (at line 3).
Optimized using Serial Mode
STEP 1
The type of query is SELECT.
1 operator(s) under root
|[ROOT:EMIT Operator (VA = 1)
|
| | SCALAR Operator (VA = 0)
QUERY PLAN FOR STATEMENT 3 (at line 4).
STEP 1
The type of query is SET OPTION ON.
QUERY PLAN FOR STATEMENT 4 (at line 5).
Optimized using Serial Mode
STEP 1
The type of query is SELECT.
1 operator(s) under root
|[ROOT:EMIT Operator (VA = 1)
|
| | SCALAR Operator (VA = 0)
QUERY PLAN FOR STATEMENT 5 (at line 6).
STEP 1
The type of query is SET OPTION OFF.
QUERY PLAN FOR STATEMENT 6 (at line 7).
Optimized using Serial Mode
STEP 1
The type of query is SELECT.
2 operator (s) under root
|[ROOT:EMIT Operator (VA = 2)
|
SCALAR AGGREGATE Operator (VA = 1)
Evaluate Ungrouped COUNT AGGREGATE.

SCAN Operator (VA = 0)
FROM TABLE
syscomments
Using Clustered Index.
Index : csyscomments
Forward Scan.
Positioning at index start.
Index contains all needed columns. Base table will not be

read.
| | | Using I/0 Size 16 Kbytes for index leaf pages.
| | | With LRU Buffer Replacement Strategy for index leaf pages.
0
(1 row affected)
select show plan (-4,1056003762, 84, 1)

QUERY PLAN FOR STATEMENT 1 (at line 2).
Optimized using Serial Mode
STEP 1
The type of query is SELECT.
2 operator(s) under root
|[ROOT:EMIT Operator (VA = 2)
|
| | SCALAR AGGREGATE Operator (VA = 1)
| | Evaluate Ungrouped COUNT AGGREGATE.
| |
| | | SCAN Operator (VA = 0)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 355

read.
|

|
0

(1 row affected)
select show plan

FROM TABLE

sysobjects

Index : ncsysobjects
Forward Scan.

Positioning at index start.

Index contains all needed columns. Base table will not be

Using I/0 Size 16 Kbytes for index leaf pages.
With LRU Buffer Replacement Strategy for index leaf pages.

(-4,1056003762, 84, 2)

QUERY PLAN FOR STATEMENT 2 (at line 3).
Optimized using Serial Mode

STEP 1

The type of query is SELECT.

1 operator(s)

under root

|[ROOT:EMIT Operator (VA = 1)

|
|
0

| SCALAR Operator (VA = 0)

(1 row affected)

Example 2

In this example, show_plan performs the following:

e \Validates parameter values that sp_showplan cannot validate. -1is passed in when the user

executessp showplan without a value for a parameter. Only the <spid> value is required.

e |[fjustaprocess IDis received, then show plan returns the batch ID, the context ID, and the statement

number in three successive calls by sp_showplan.
e Findthe E_STMT pointer for the specified SQL statement number.

e Retrieves the target process'’s query plan for the statement. For parallel worker processes the
equivalent parent plan is retrieved to reduce performance impact.

e Synchronizes access to the query plan with the target process.

if (@Gbatch id is NULL)

begin

/* Pass -1 for unknown values. */
select @return value = show plan(@spid, -1, -1, -1)
if (@Greturn value < 0)

return (1)
else
select @batch id = @return value
select @return value = show plan(@spid, @batch id,
if (@return value < 0)

return (1)
else

select @context id = @return value

select @return value = show plan(@spid, @batch id,
if (@return value < 0)

return (1)
else
begin

select @stmt num = @return value

return (0)

end

end

As the example shows, call show_plan three times for a <spid>:

356 PUBLIC

=1, =1)

@context id, -1)

Reference Manual: Building Blocks
Transact-SQL Functions

e The first returns the batch ID
® The second returns the context ID
e The third displays the query plan, and returns the current statement number.

Usage

e For astatement that is not performing well, you can change the plans by altering the optimizer settings or
specifying an abstract plan.

e \When you specify the first int variable in the existing show_plan argument as “-", show_plan treats the
second parameter as a SSQLID.

i Note
A single entry in the statement cache may be associated with multiple, and possibly different, SQL plans.

show_plan displays only one of them.

See also sp_showplan in Reference Manual: Procedures

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

The permission checks for show _plan differ based on your granular permissions settings.

Granular Description
Permissions

Enabled With granular permissions enabled, you must be a user with monitor qp

performance privilege or the same user that issued the target process to issue

show plan.

Disabled With granular permissions disabled, you must be a user with sa_role or the same user

that issued the target process to issue show_plan.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 357

Auditing

You can enable securityif (@batch_id is NULL) auditing option to audit this function. Values in event and
extrainfo columns from the sysaudits table are:

Audit option Event Command or access audited Informationinextrainfo:

security 86 show_plan ® Roles - Current active roles
® Keywords or options — SHOW PLAN
® Previous value — NULL
® Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.152 show_prepared_statements

Displays the SQL text of prepared statements for a specified server process ID (spid) or for all active spids.

Syntax

show prepared statements (<spid>)

Parameters

<spid> Server process ID (spid) of the prepared statement. You can retrieve spid by running sp_who or

select spid from master..sysprocesses.

Examples

Example 1

Displays the SQL text of all prepared statements in all active sessions (the output is shortened for easier
readability):

select show prepared statements(spid) as lwp text, spid from master..sysprocesses

Reference Manual: Building Blocks
358 PUBLIC Transact-SQL Functions

lwp text

create proc dynl00 as insert into numeric test (cl)values (?)

create proc dynl00 as set statement cache on

create proc dynl0l as insert into numeric test (cl)values (.1)
Example 2

Displays the SQL text for spid 20 (the output is shortened for easier readability):

select show prepared statements(20) as lwp text
go
lwp text

create proc dynl02 as insert into numeric test (cl)values (?))

Usage

e Todisplay the prepared statements for an active spid, run:
show prepared statement (<spid>)

To display prepared statements of all active spids, run:

select show prepared statements (spid) from master..sysprocesses

® The datatype of theresultis text.

e Setthe textsize value at alarge value to avoid result set truncation. See Global Variables Affected by set
Options in the Reference Manual: Commands for how to change the textsize value.

Permissions

The permission checks for show prepared statements differ based on your granular permissions settings.

Granular Description
Permissions

Enabled

spid

20

21

With granular permissions enabled, you must be a user withmon_role, or have

monitor gp performance permission to execute show prepared statements.

Disabled

execute show prepared statements.

Reference Manual: Building Blocks
Transact-SQL Functions

With granular permissions disabled, you must be a user withmon _roleor sa roleto

PUBLIC

3.153 show_role

Displays the currently active system-defined roles of the current login.

Syntax

show_role ()

Examples

Example 1

Displays the currently active system-defined roles of the current login:
select show role()
sa role sso_role oper role replication role

Example 2

Displays "You have sa_role" if sa_role is the first role in the currently active system-defined roles:

if charindex("sa role", show role()) >0
begin
print "You have sa role"
end
Usage

® show_role, asystem function, returns the login's current active system-defined roles, if any (sa_role,
sso_role,oper role,Of replication role). |ftheloginhas noroles, show role returns NULL.

e \When a Database Owner invokes show_role after using setuser, show_role displays the active roles of
the Database Owner, not the user impersonated with setuser.

See also:

e Transact-SQL Users Guide
® alter role,create role,drop role, grant, revoke, set in Reference Manual: Commands

® sp activeroles, sp displayroles in Reference Manual: Procedures

Reference Manual: Building Blocks
360 PUBLIC Transact-SQL Functions

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute show_role.

Related Information

proc_role [page 298]
role_contain [page 323]

3.154 show_sec_services

Lists the security services that are active for the session.

Syntax

show sec services()

Examples

Example 1

Shows that the user's current session is encrypting data and performing replay detection checks:

select show sec services ()

encryption, replay detection

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

361

Usage

If no security services are active, show sec services returns NULL.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute show sec services.

Related Information

is_sec_service_on [page 219]

3.155 shrinkdb_status

Determines the status of a shrink operation.

Syntax

shrinkdb status(<database name>, <query>)

Parameters

<database name>

is the name of the database you are checking.
<query>

is one of:

® in progress - determines if a shrink database is in progress on this database.
Returns a value of O for no, a value of 1 for yes.

Reference Manual: Building Blocks
362 PUBLIC Transact-SQL Functions

® owner instance — determines which instance in a cluster is running a shrink
operation. Returns:
o QO -ifnoshrinkisin progress.
o The owning instance ID — if an instance has a shrink operation running. For a

nonclustered server, the "owning instance” is always 1.

® au total - returns the total number of allocation units (that is, groups of 256
pages) the shrink operation affects.

® au current - returns the total number of allocation units processed by the shrink
operation.

® pages moved - returns the number of index or data pages moved during the
current shrink operation. pages_moved does not include empty pages that were
released during the shrink operation.

® Dbegin date - the date and time the current shrink operation began, returned as
anunsigned bigint.

® end date - returns the date and time the shrink operation ended. Returns O when
the shrink operation is ongoing or completed but not waiting for a restart.

® requested end date —returns the date and time the active shrink operation is
requested to end.

® time move - returns the amount of time, in microseconds, spent moving pages.
time move includes the time spent updating page references to the moved pages,
but does not include the time spent performing administrative tasks that happen at
the end of individual move blocks.

® time repair - returnsthe amount of time, in microseconds, spent on
administrative tasks for moving blocks. time repair plus the value for
time move indicates the approximate amount of time Adaptive Server spent
working on the current shrink operation.

® last_error —returnsthe error the shrink operation encountered when it came to
abnormal stop.

® current object id-— Object ID of the table being shrunk

® current page — number of the page most recently, or currently, being moved

® buffer read wait —amount of time, in microseconds, spent waiting for buffers
to be read

® puffer write wait —amountof time, in microseconds, spent waiting for buffers
to be written

® pages read - number of pages read by the shrink operation

® pages written —number of pages written by the shrink operation

® index sort_ count —number of times the shrink operation sorted duplicated
indexes

Examples

Example 1

checks the progress of the pubs2 database shrink operation:

select shrinkdb status("pubs2", "in progress")

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 363

Example 2

returns the amount of time Adaptive Server spent moving the pages of the pubs2 database:

select shrinkdb status ("pubs2", "time move")
Example 3

returns the amount of time Adaptive Server spent shrinking the pubs2 database:

select shrinkdb status ("pubs2", "time move")

Usage

shrinkdb_status returns O if no shrink operations are currently running on the database.

Auditing

You can enable func_obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationinextrainfo:

func_dbaccess 86 shrinkdb status ® Roles — Current active roles
® Keywords or options — SHRINKDB_STATUS
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.156 sign

Returns the sign (1 for positive, O, or -1 for negative) of the specified value.

Syntax

sign (<numeric>)

Reference Manual: Building Blocks
364 PUBLIC Transact-SQL Functions

Parameters

<numeric>
is any exact numeric (numeric, dec, decimal, tinyint, smallint, int,Oorbigint),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.
Examples
Example 1

Returns the sign for -123:

select sign(-123)

Example 2

Returns the sign for O:

select sign (0)

Example 3

Returns the sign for 123:

select sign(123)

Usage

Results are of the same type, and have the same precision and scale, as the numeric expression.

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 365

Permissions

Any user can execute sign.

Related Information

abs [page 59]
ceiling [page 89]
floor [page 180]
round [page 327]

3.157 sign_pages

Performs operations related to page diagnostic signatures.

Syntax

sign pages ('<database name>', {'sign'|'clear'|'test'})

Parameters

<database_name>exprl

Is the name of the database you are checking

sign
Ensures that every page in <database name> is signed. A return value of 1 means the
pages are signed. A return value of O indicates the signed state of the pages is
ambiguous.

clear
Ensures that every page in <database name> is unsigned. A return value of O means
the database does not contain any signed pages. A return value of 1 indicates the
signed state of the pages is ambiguous.

test

Checks if any pages in <database name> are signed. A return value of O means the
database does not contain any signed pages. A return value of 1 indicates the signed
state of the pages is ambiguous.

Reference Manual: Building Blocks
366 PUBLIC Transact-SQL Functions

Examples

Signed pages

Tests the pubs2 database for signed pages:

select sign pages('pubs2', 'test')
Signed pages in database

Ensures that all pages in the pubs2 database are signed:

select sign pages('pubs2', 'sign')
Unsigned pages in database

Ensures that all pages in the pubs2 database are not signed:

select sign pages('pubs2', 'clear')

Usage

® sign pages can take along time to return a result because it may need to check every page in the
database.

e Databases cannot have any signed pages prior to downgrade. That is, before downgrading a database,
sign_pages (database name, 'test') mustreturnavalue of O.

e |fyouinclude the sign option, and the database does not currently have allow page signingenabled,
sign pages enables this function.

e |[fyouinclude the clear option, and the database has allow page signingenabled, sign pages
disables this function.

e Trace flag 12339 forces SAP ASE to sign every page in every database. If trace flag 12339 is set, you cannot
issue sign_pages (<database name>), 'clear')andsign_pages(<database_name>),

'text') always returns 1.

Permissions

You must have the sa_role torun sign_pages.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 367

Auditing

You can enable func_dbaccess auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func _dbaccess 86 sign pages ® Roles - Current active roles
® Keywords or options — SIGN PAGES
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.158 sin

Returns the sine of the angle-specified in radians.

Syntax

sin (<approx numeric>)

Parameters

<approx_numeric>

is any approximate numeric (float, real, or double precision)columnname,
variable, or constant expression.

Examples

Example 1

Returns the sine of 45:

select sin(45)

Reference Manual: Building Blocks
368 PUBLIC Transact-SQL Functions

0.850904

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute sin.

Related Information

cos [page 117]
degrees [page 168]
radians [page 302]

3.159 sortkey

Generates values that can be used to order results based on collation behavior, which allows you to work with
character collation behaviors beyond the default set of Latin character-based dictionary sort orders and case-
or accent-sensitivity.

Syntax

sortkey (<char expression >| <uchar expression> [, {<collation name> |
<collation ID>}])

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 369

Parameters

<char_expression>

is a character-type column name, variable, or constant expression of char, varchar,

nchar, or nvarchar type.

<uchar_expression>
is a character-type column name, variable, or constant expression of unichar or

univarchar type.
<collation_name>

is a quoted string or a character variable that specifies the collation to use.
<collation_ID>

is an integer constant or a variable that specifies the collation to use.

Examples

Example 1

Shows sorting by European language dictionary order:

select * from cust table where cust name like "TI%" order by
sortkey (cust name, "dict")

Example 2

Shows sorting by simplified Chinese phonetic order:

select *from cust table where cust name like "TI%" order by
sortkey (cust-name, "gbpinyin")

Example 3

Shows sorting by European language dictionary order using the in-line option:

select *from cust table where cust name like "TI%" order by cust french sort
Example 4

Shows sorting by Simplified Chinese phonetic order using preexisting keys:

select * from cust table where cust name like "TI%" order by
cust chinese sort

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
370 PUBLIC Transact-SQL Functions

Permissions

Any user can execute sortkey.

3.159.1 Usage for sortkey

There are additional considerations for sortkey.

® sortkey, asystem function, generates values that can be used to order results based on collation
behavior. This allows you to work with character collation behaviors beyond the default set of Latin-
character-based dictionary sort orders and case- or accent-sensitivity. The return value isavarbinary
datatype value that contains coded collation information for the input string that is returned from the
sortkey function.
For example, you can store the values returned by sortkey in a column with the source character string.
Ro retrieve the character data in the desired order, include in the select statement an order by clause
on the columns that contain the results of running sortkey.
sortkey guarantees that the values it returns for a given set of collation criteria work for the binary
comparisons that are performed on varbinary datatypes.

® sortkey can generate up to six bytes of collation information for each input character. Therefore, the
result from using sortkey may exceed the length limit of the varbinary datatype. If this happens, the
result is truncated to fit. Since this limit is dependent on the logical page size of your server, truncation
removes result bytes for each input character until the result string is less than the following for DOL and
APL tables:

Table 16: Maximum Row and Column Length—APL and DOL Tables

Locking Scheme Page Size Maximum Row Length Maximum Column Length
APL tables 2K (2048 bytes) 1962 1960 bytes

4K (4096 bytes) 4010 4008 bytes

8K (8192 bytes) 8106 8104 bytes

16K (16384 bytes) 16298 16296 bytes
DOL tables 2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes

8K (8192 bytes) 8108 8102 bytes

16K (16384 bytes) 16300 16294 bytes

If table does not include any variable
length columns

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 371

Locking Scheme Page Size Maximum Row Length Maximum Column Length

16K (16384 bytes) 16300 8191-6-2 = 8183 bytes

(subject to a max start offset If table includes at least on variable
of varlen = 8191) length column.*

* This size includes six bytes for the row overhead and two bytes for the row length field.

If this occurs, the SAP ASE server issues a warning message, but the query or transaction that contained
the sortkey function continues to run.

® <char expression>o0r< uchar expression> mustbe composed of characters that are encoded in
the server’s default character set.

® <char expression>oOr<uchar expression>canbeanempty string. Ifitis an empty string, sortkey
returns a zero-length varbinary value, and stores a blank for the empty string.

An empty string has a different collation value than an NULL string from a database column.

® |f<char expression>or< uchar expression>is NULL, sortkey returnsanull value.

e |f aunicode expression has no specified sort order, the SAP ASE server uses the binary sort order.

e |fyou do not specify avalue for <collation name>or<collation ID>, sortkey assumes binary
collation.

e The binary values generated from the sortkey function can change from one major version to another
major version of SAP ASE, such as version 12.0 to 12.5, version 12.9.2 t0 12.0, and so on. If you are
upgrading to the current version of SAP ASE, regenerate keys and repopulate the shadow columns before
any binary comparison takes place.

i Note

Upgrades from version 12.5 t0 12.5.0.1 do not require this step, and the SAP ASE server does not
generate any errors or warning messages if you do not regenerate the keys. Although a query involving
the shadow columns should work fine, the comparison result may differ from the pre-upgrade server.

Related Information

compare [page 103]

3.159.1.1 Collation Tables

There are two types of collation tables you can use to perform multilingual sorting.

e A "built-in" collation table created by the sortkey function. This function exists in versions of SAP ASE
later than 11.5.1. You can use either the collation name or the collation ID to specify a built-in table.

e Anexternal collation table that uses the Unilib library sorting functions. You must use the collation name to
specify an external table. These files are located in $SYBASE/collate/unicode.

Reference Manual: Building Blocks
372 PUBLIC Transact-SQL Functions

Both of these methods work equally well, but a “built-in” table is tied to a SAP ASE database, while an

external table is not. If you use an SAP ASE database, a built-in table provides the best performance. Both
methods can handle any mix of English, European, and Asian languages.

The two ways to use sortkey are:

® |n-line —this uses sortkey as part of the order by clause and is useful for retrofitting an existing
application and minimizing the changes. However, this method generates sort keys on-the-fly, and
therefore does not provide optimum performance on large data sets of more than 1000 records.

® Pre-existing keys — this method calls sortkey whenever a new record requiring multilingual sorting is

added to the table, such as a new customer name. Shadow columns (binary or varbinary type) must be
set up in the database, preferably in the same table, one for each desired sort order such as French,

Chinese, and so on. When a query requires output to be sorted, the order by clause uses one of the
shadow columns. This method produces the best performance since keys are already generated and

stored, and are quickly compared only on the basis of their binary values.

You can view a list of available collation rules. Print the list by executing either sp_helpsort, or by querying

and selecting the name, id, and description from syscharsets (type is between 2003 and 2999).

3.159.1.2 Collation Names and IDs

The valid values for collation name and ID, and their descriptions.

Collation Name Collation ID Description

default 20 Default Unicode multilingual

thaidict 21 Thai dictionary order

is014651 22 ISO14651 standard

utf8bin 24 UTF-16 ordering — matches UTF-8 binary ordering
altnoacc 39 CP 850 Alternative — no accent

altdict 45 CP 850 Alternative — lowercase first

altnocsp 46 CP 850 Western European — no case preference
scandict 47 CP 850 Scandinavian - dictionary ordering
scannocp 48 CP 850 Scandinavian — case-insensitive with preference
gbpinyin n/a GB Pinyin

binary 50 Binary sort

dict 51 Latin-1 English, French, German dictionary
nocase 52 Latin-1 English, French, German no case

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

373

Collation Name Collation ID Description

nocasep 53 Latin-1 English, French, German no case, preference

noaccent 54 Latin-1 English, French, German no accent

espdict 55 Latin-1 Spanish dictionary

espnocs 56 Latin-1 Spanish no case

espnoac 57 Latin-1 Spanish no accent

rusdict 58 ISO 8859-5 Russian dictionary

rusnocs 59 ISO 8859-5 Russian no case

cyrdict 63 ISO 8859-5 Cyrillic dictionary

cyrnocs 64 ISO 8859-5 Cyrillic no case

elldict 65 ISO 8859-7 Greek dictionary

hundict 69 ISO 8859-2 Hungarian dictionary

hunnoac 70 ISO 8859-2 Hungarian no accents

hunnocs 71 ISO 8859-2 Hungarian no case

turdict 72 ISO 8859-9 Turkish dictionary

turknoac 73 ISO 8859-9 Turkish no accents

turknocs 74 ISO 8859-9 Turkish no case

binaryalt 99 Binary sort order that matches the Business Suite (and ABAP) binary sort

order

cp932bin 129 CP932 binary ordering

dynix 130 Chinese phonetic ordering

gb2312bn 137 GB2312 binary ordering

cyrdict 140 Common Cyrillic dictionary

turdict 155 Turkish dictionary

euckscbn 161 EUCKSC binary ordering

gbpinyin 163 Chinese phonetic ordering

rusdict 165 Russian dictionary ordering

Reference Manual: Building Blocks

374 PUBLIC Transact-SQL Functions

Collation Name Collation ID Description

sjisbin 179 SJIS binary ordering
eucjisbn 192 EUCJIS binary ordering
bighbin 194 BIG5 binary ordering
sjisbin 259 Shift-JIS binary order

3.160 soundex

Returns a four-character soundex code for character strings that are composed of a contiguous sequence of
valid single- or double-byte Roman letters.

Syntax

soundex (<char expr >| <uchar expr>)

Parameters

<char_expr>

is a character-type column name, variable, or constant expression of char, varchar,

nchar, or nvarchar type.
<uchar_expr>

is a character-type column name, variable, or constant expression of unichar or

univarchar type.

Examples

Example 1

Returns the four-character soundex codes for "smith" and "smythe":

select soundex ("smith"), soundex ("smythe")

S530 S530

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 375

Usage

® soundex, a string function, returns a four-character soundex code for character strings that are composed
of a contiguous sequence of valid single- or double-byte roman letters.

® The soundex function converts an alphabetic string to a four-digit code for use in locating similar-
sounding words or names. All vowels are ignored unless they constitute the first letter of the string.

® |[f<char expr>or<uchar expr>is NULL, returns NULL

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute soundex.

Related Information

difference [page 175]

3.161 space

Returns a string consisting of the specified number of single-byte spaces.

Syntax

space (<integer expr>)

Parameters

<integer_expr>

Reference Manual: Building Blocks
376 PUBLIC Transact-SQL Functions

is any integer (tinyint, smallint, or int) column name, variable, or constant

expression.

Examples

Example 1

Returns a string with four spaces between "aaa" and "bbb":

select "aaa", space(4), "bbb"

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute space.

Related Information

isnull [page 222]
rtrim [page 332]

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

377

3.162 spaceusage

Returns metrics for space use in SAP ASE as a comma-separated string.

Syntax

spaceusage (<db_id> [, <object id> [, <index id >[, <partition id> 1 1 1)

Parameters

<db_id >
a numeric expression that is the ID for a database. These are stored in the dbid column
of sysdatabases.

<object_id >
a numeric expression that is an object ID for a table object. These are stored in the id
column of sysobjects..

<index_id>
is the index ID of the object you are investigating. Depending on the <index id>you

use, spaceusage reports

® <index id> =0 - returns the space metrics for only the data layer of an object,
including all its data partitions.

e <index id>=1-isapplicable only for allpages-locked tables with a clustered
index and returns the space metrics for only the index layer of the clustered index.

® <index id>>1-returns the space metrics for the index layer of the
corresponding index.

® <index id> =255 - returns the space metrics for off-row, large object page
chains.

<partition_id>

the ID of the partition for which space usage metrics are to be retrieved.

Examples

Example 1

Returns space usage information for the entire database:

select spaceusage ()
"reserved pages=1163, used pages=494, data pages=411, index pages=78,
oam pages=83, allocation units=94, row count=50529, tables=33,

Reference Manual: Building Blocks
378 PUBLIC Transact-SQL Functions

LOB pages=3, syslog pages=8"
Example 2
Returns space metrics for all the indexes on the object specified by object id, including all partitions, if
any, on each index, and the space used by off-row large object page chains:
select spaceusage (dbid, objid)
Example 3

Returns space metrics for the specified partition for the listed <object id>and <index id>:
select spaceusage (database id, object id, index id)

The output from spaceusage run against a database containing numerous user objects is shown below.
spaceusage reports the space metrics for the data layer and all the indexes on this table.

select spaceusage (db_id(), object id('syspartitions'))

reserved pages=2220, used pages=2104, data pages=2100, index pages=1096, oam
pages=4, allocation units=373, row count=174522, tables=1, LOB pages=0

In this result, the reserved pages, used pages, and data pages values report the respective page counts for
data and index pages. Because index pages reports the page counts for only the index pages of the three
indexes on syspartitions, determine the number of data pages for only the data layer of this table by
subtracting the value for index pages from the value for the data pages: 2100 - 1096 = 1004 pages.

Confirm the number of data pages for only the data layer of this table by executing spaceusage with a

value for the <index id> parameter of O:

select spaceusage (db_id(), object id('syspartitions'), 0)

reserved pages=1064, used pages=1005, data pages=1004, index pages=0, oam
pages=1, allocation units=229, row count=174522, tables=1, LOB pages=0

spaceusage reports a value for data pages (1004), which is consistent with the equation above, and
because the query requests space metrics for only the data layer, it returns a value of O for the index pages.
Example 4

Returns the aggregate space metrics for all objects, including user and system catalogs, that occupy space
in the database:

select spaceusage(database_id)

However, spaceusage does not report on tables that do not occupy space (for example, fake and proxy
tables). Currently, spaceusage also does not report on syslogs.

Usage

Depending on which parameters you include, spaceusage may report on any or all of the following:

® reserved pages —number of pages reserved for an object, which may include index pages if you
selected index IDs based on the input parameters.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 379

® used pages — number of pages used by the object, which may include index pages if you selected index
IDs based on the input parameters.
The value for used pages that spaceusage returns when you specify <index id>=1(thatis, for all-
pages clustered indexes) is the used page count for the index layer of the clustered index. However, the
value the used pages function returns when you specify <index id> = lincludes the used page counts
for the data and the index layers.

® data pages — number of data pages used by the object, which may include index pages if you selected
index IDs based on the input parameters.

® index pages — number of index-only pages, if the input parameters specified processing indexes on the
objects. To determine the number of pages used for only the index-level pages, subtract the number of
large object (LOB) pages from the number of index pages.

® oam pages — number of OAM pages for all OAM chains, as selected by the input parameters.
For example, if you specify:

spaceusage (<database id>, <object id>, <index id>)

oam pages indicates the number of OAM pages found for this index and any of its local index partitions. If
you run spaceusage against a specific object, oam pages returns the amount of overhead for the extra
pages used for this object’s space management.
When you execute spaceusage for an entire database, oam pages returns the total overhead for the
number of OAM pages needed to track space across all objects, and their off-row LOB columns.

® allocation units — number of allocation units that hold one or more extents for the specified object,
index, or partition. allocation units indicates how many allocation units (or pages) SAP ASE must
scan while accessing all the pages of that object, index, or partition.
When you run spaceusage against the entire database, allocation units returns the total number of
allocation units reserving space for an object. However, because the server can share allocation units
across objects, this field might show a number greater than the total number of allocation units in the
entire database.

® row count — number of rows in the object or partition. spaceusage reports this row count as O when you
specify the <index id> parameter.

® tables —total number of tables processed when you execute spaceusage and include only the
<database id> parameter (thatis, when you are investigating space metrics for the entire database).

® 10B pages — number of off-row large object pages for which the index ID is 255.
LOB pages returns a nonzero value only when you use spaceusage to determine the space metrics for all
indexes, or only the LOB index, on objects that contain off-row LOB data. 1.0B pages returns O when you
use spaceusage to examine the space metrics only for tables (which have index IDs of O).
When you run spaceusage against the entire database, 1.O0B pages displays the aggregate page counts
for all LOB columns occupying off-row storage in all objects.

Reference Manual: Building Blocks
380 PUBLIC Transact-SQL Functions

Auditing

You can enable func obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event = Command or access audited Information in extrainfo:

func_obj access 86 spaceusage ® Roles - Current active roles
® Keywords or options — SPACEUSAGE
® Previous value — NULL
® Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.163 spid_instance_id

(Cluster environments only) Returns the instance ID on which the specified process ID (spid) is running.

Syntax

spid instance id(<spid value>)

Parameters

<spid_value>

the spid number for which you are requesting the instance ID.

Examples

Example 1

Returns the ID of the instance that is running process ID number 27:

select spid instance id(27)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 381

Usage

e [fyoudonotinclude a spid value, spid instance idreturns NULL.
e |fyou enter an invalid or nonexisting process ID value, spid instance idreturns NULL.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute spid instance id.

3.164 square

Calculates the square of a specified value expressed as a float.

Syntax

square (<numeric expression>)

Parameters

<numeric_expression>

is a numeric expression of type float.

Examples

Example 1

Returns the square from an integer column:

select square (total sales)from titles

Reference Manual: Building Blocks
382 PUBLIC Transact-SQL Functions

16769025.00000
15023376.00000
350513284.00000

16769025.00000
(18 row(s) affected)

Example 2

Returns the square from a money column:

select square(price) from titles

399.600100
142.802500
8.940100
NULL

224.700100
(18 row(s) affected)

Usage

This function is the equivalent of power (<numeric_expression>, 2), butitreturns type £loat rather than

int.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute square.

Related Information

System and User-Defined Datatypes [page 13]
power [page 297]

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 383

3.165 sqrt

Calculates the square root of the specified number.

Syntax

sgrt (<approx numeric>)

Parameters

<approx_numeric>

is any approximate numeric (float, real, or double precision)columnname,
variable, or constant expression that evaluates to a positive number.

Examples

Example 1

Calculates the square root of 4:

select sqrt (4)

2.000000

Usage

If you attempt to select the square root of a negative number, the SAP ASE server returns an error message
similar to:

Domain error occurred.

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
384 PUBLIC Transact-SQL Functions

Permissions

Any user can execute sqgrt.

Related Information

power [page 297]

3.166 stddev

Computes the standard deviation of a sample consisting of a numeric expression, as a double.

i Note

stddev and stdev are aliases for stddev_samp.

Syntax

See stddev_samp.

Related Information

stddev_samp [page 391]

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 385

3.167 used_pages

Reports the number of pages used by a table, an index, or a specific partition. Unlike data pages,
used_pages does include pages used for internal structures. This function replaces the used pgs function
used in versions of SAP ASE earlier than 15.0.

Syntax

used pages (<dbid>, <object id>[, <indid>[, <ptnid>]])

Parameters

<dbid>
is the database id where target object resides.
<object_id>

is the object ID of the table for which you want to see the used pages. To see the pages
used by an index, specify the object ID of the table to which the index belongs.

<indid>
is the index id of interest.
<ptnid>
is the partition id of interest.
Examples
Example 1

Returns the number of pages used by the object with a object ID of 31000114 in the specified database
(including any indexes):

select used pages (5, 31000114)
Example 2

Returns the number of pages used by the object in the data layer, regardless of whether or not a clustered
index exists:

select used pages (5, 31000114, O0)

Reference Manual: Building Blocks
386 PUBLIC Transact-SQL Functions

Example 3

Returns the number of pages used by the object in the index layer for an index with index ID 2. This does
not include the pages used by the data layer (See the first bullet in the Usage section for an exception):

select used pages (5, 31000114, 2)
Example 4

Returns the number of pages used by the object in the data layer of the specific partition, which in this case
is 2323242432:

select used pages (5, 31000114, 0, 2323242432)

Usage

® [nanall-pages locked table with a clustered index, the value of the last parameter determines which pages
used are returned:

O used pages (dbid, objid, 0) —which explicitly passes O as the index ID, returns only the pages
used by the data layer.
O wused pages (dbid, objid, 1) —returnsthe pages used by the index layer as well as the pages
used by the data layer.
To obtain the index layer used pages for an all-pages locked table with a clustered index, subtract
used_pages (dbid, objid, 0) fromused pages(dbid, objid, 1).
e |Instead of consuming resources, used pages discards the descriptor for an object that is not already in
the cache.
® |ninan all-pages-locked table with a clustered index, used_pages is passed only the used pages in the
data layer, for avalue of indid = 0. When indid=1 is passed, the used pages at the data layer and at the
clustered index layer are returned, as in previous versions.
® used pages issimilar tothe old used pgs (objid, doampg, iocampg) function.

e All erroneous conditions result in a return value of zero.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute used_pgs.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 387

Auditing

You can enable func _obj access auditing option to audit this function. Values in event and extrainfo
columns from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

func_obj access 86 used pages ® Roles - Current active roles
® Keywords or options — USED_PAGES
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

Related Information

data_pages [page 132]
object_id [page 273]

3.168 stdev

Computes the standard deviation of a sample consisting of a numeric expression, as a double.

i Note

stddev and stdev are aliases for stddev_samp.

Syntax

See stddev_samp.

Related Information

stddev_samp [page 391]

Reference Manual: Building Blocks
388 PUBLIC Transact-SQL Functions

3.169 stdevp

Computes the standard deviation of a population consisting of a numeric expression, as a double.

i Note

stdevp is an alias for stddev_pop.

Syntax

See stddev_pop.

Related Information

stddev_pop [page 389]

3.170 stddev_pop

Computes the standard deviation of a population consisting of a numeric expression, as a double. stdevp is

an alias for stddev_pop, and uses the same syntax.

Syntax

stddev_pop ([all | distinct] <expression>)

Parameters

all
applies stddev_pop to all values. all is the default.

distinct

eliminates duplicate values before stddev_pop is applied.

<expression>

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

389

is the expression—commonly a column name—in which its population-based standard

deviation is calculated over a set of rows.

Examples

Example 1

The following statement lists the average and standard deviation of the advances for each type of book in

the pubs2 database.

select type, avg(advance) as "avg", stddev pop (advance)
as "stddev" from titles group by type order by type

Usage

Computes the population standard deviation of the provided value expression evaluated for each row of the
group (if distinct was specified, then each row that remains after duplicates have been eliminated), defined

as the square root of the population variance.

The formula that defines the variance of population of size n
having mean y (var_pop) is presented below. The population
standard deviation (stddev_pop) is the positive square root of

this number.
2 .
5 O Variance
2 _ Z (x; — 1) N
O =— n Population size
n ﬂ Mean of the values X :

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute stddev_pop.

390 PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

Related Information

stddev_samp [page 391]
var_pop [page 437]
var_samp [page 439]

3.171 stddev_samp

Computes the standard deviation of a sample consisting of a numeric expression as a double. stdev and

stddev are aliases for stddev_samp, and use the same syntax.

Syntax

stddev_samp ([all | distinct] <expression>)

Parameters

all

applies stddev_samp to all values. a1l is the default.

distinct
eliminates duplicate values before stddev_samp is applied.
<expression>
is any numeric datatype (float, real, or double precision)expression.
Examples
Example 1

The following statement lists the average and standard deviation of the advances for each type of book in

the pubs2 database.

select type, avg(advance) as "avg",
stddev_samp (advance) as "stddev" from titles
where total sales > 2000 group by type order by type

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

391

Usage

Computes the sample standard deviation of the provided value expression evaluated for each row of the group
(if distinct was specified, then each row that remains after duplicates have been eliminated), defined as the

square root of the sample variance.

The formula that defines the variance of population of size n
having mean X (var_samp) is presented below. The
population standard deviation (stddev_samp) is the positive
square root of this number.

2
S Variance
=2
2 Z (x;, - X) o
S == 1 Population size
n— 1 X Mean of the values X

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute stddev_samp.

Related Information

stddev_pop [page 389]
var_pop [page 437]
var_samp [page 439]

392 PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

3.172 str

Returns the character equivalent of the specified number, and pads the output with a character or numeric to
the specified length.

Syntax

str (<approx numeric>[, <length >[, <decimal>]])

Parameters

<approx_numeric>

is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

<length>
sets the number of characters to be returned (including the decimal point, all digits to
the right and left of the decimal point, and blanks). The default is 10.

<decimal>
sets the number of decimal digits to be returned. The default is O. Also can be used to
pad the output with a character or numeric to the specified length.
When you specify a character or numeric as a literal string, the character or numeric is
used as padding for the field. When you specify a numeric value, sets the number of
decimal places. The default is 0. When <decimal> is not set, the field is padded with
blanks to the value specified by <length>.

Examples

Example 1

When <decimal> is set as the string literal '0', the field is padded with O to a length of 10 spaces.

select str(5,10,'0")

0000000005
Example 2

When <decimal>is a numeric of 5, the number of decimal places is set to 5.

select str(5,10,5)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 393

5.00000
Example 3

When <decimal> is set to the character of '_', the original value is maintained and the field is padded with
the specified character to a length of 16 spaces.

select str(12.34500,16,"' ')

12.34500
Example 4

Without <decimal> set, the floating number is set to zero decimal places and the field is padded with
blanks to a length of 16 spaces.

select str(12.34500e,106)

Example 5

With <decimal> set to a numeric, the floating number is processed to 7 decimal places and the field is
padded with blanks to a length of 16 spaces.

select str(12.34500e,16,7)

12.3450000
Example 6

Specify a prefix character and process a floating number to a specified number of decimal places using
these examples:

select str (convert (numeric(10,2),12.34500e),16,'-")

select str(convert (numeric(10,8),12.34500e),16,'-")

Usage

<length>and <decimal> are optional, but if used, must be positive integers. st r rounds the decimal portion
of the number so that the results fit within the specified length. The length should be long enough to
accommodate the decimal point and, if the number is negative, the number’s sign. The decimal portion of the

Reference Manual: Building Blocks
PUBLIC Transact-SQL Functions

result is rounded to fit within the specified length. If the integer portion of the number does not fit within the
length, however, str returns a row of asterisks of the specified length. For example:

select str(123.456, 2, 4)

* x

If <approx_numeric>is NULL, returns NULL.

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute str.

Related Information

abs [page 59]
ceiling [page 89]
floor [page 180]
round [page 327]
sign [page 364]

3.173 str_replace

Replaces any instances of the second string expression (<string expression2>) that occur within the first
string expression (<string expressionl>) with athird expression (<string expression3>).

Syntax

str replace ("<string expressionl>", "<string expression2>",
"<string expression3>")

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 395

Parameters

<string_expressionl>

is the source string, or the string expression to be searched, expressed as char,

varchar, unichar, univarchar, varbinary, or binary datatype.

<string_expression2>

is the pattern string, or the string expression to find within the first expression
(<string expressionl>).<string expression2> isexpressed as char,

varchar, unichar, univarchar, varbinary, Or binary datatype.

<string_expression3>

is the replacement string expression, expressed as char, varchar, unichar,

univarchar,binary, or varbinary datatype.

Examples

Example 1

Replaces the string def within the string cdefghi with yyy.

select str replace("cdefghi", "def", "yyy")

cyyyghi
(1 row(s) affected)

Example 2

Replaces all spaces with "toyota".

select str replace("chevy, ford, mercedes", "","toyota")

chevy, toyotaford, toyotamercedes
(1 row(s) affected)

i Note

The SAP ASE server converts an empty string constant to a string of one space automatically, to
distinguish the string from NULL values.

Example 3

Returns “abcghijklm™:

select str replace("abcdefghijklm", "def", NULL)

abcghijklm
(1 row affected)

Reference Manual: Building Blocks
396 PUBLIC Transact-SQL Functions

Usage

® Returnsvarchardataif <string expression> (1,2, 0r 3)is char or varchar

® Returnsunivarchardataif<string expression> (1, 2,0r 3)iSunichar Or univarchar

® Returnsvarbinarydataif <string expression>(1,2,0r 3)isbinaryOr varbinary

e Allarguments must share the same datatype.

e |fany of the three arguments is NULL, the function returns null.
str_replace accepts NULL in the third parameter and treats it as an attempt to replace
<string expression2> with NULL, effectively turning str replace into a “string cut” operation.
For example, the following returns “abcghijklm:

str replace ("abcdefghijklm", "def", NULL)

® Theresult length may vary, depending upon what is known about the argument values when the
expression is compiled. If all arguments are variables with known constant values, the SAP ASE server
calculates the result length as:

result length = ((s/p)* (r-p)+s)
where

s = length of source string

P length of pattern string

r length of replacement string
if (r-p) <= 0, result length = s

e |[fthe source string (<string expressionl>)isacolumn, and <string expression2>and
<string expression3> are constant values known at compile time, the SAP ASE server calculates the
result length using the formula above.

e |fthe SAP ASE server cannot calculate the result length because the argument values are unknown when
the expression is compiled, the result length used is 255, unless traceflag 244 is on. In that case, the result
length is 16384.

e result_len never exceeds 16384.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute str_replace.

Related Information

System and User-Defined Datatypes [page 13]

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 397

3.174 strtobin

Converts a sequence of alphanumeric characters to their equivalent hexadecimal digits.

Syntax

select strtobin (“<string of valid alphanumeric characters>")

Parameters

<string of valid alphanumeric characters>

is string of valid alphanumeric characters, which consists of [1 - 9], [a — f] and [A - F].

Examples

Example 1

Converts the alphanumeric string of “723ad82fe” to a sequence of hexadecimal digits:

select strtobin("723ad82fe™)
go

0x0723ad82fe

The in-memory representation of the alphanumeric character string and its equivalent hexadecimal digits
are:

Alphanumeric character string (9 bytes)

0 7 2 3 a d 8 2 f e

Hexadecimal digits (5 bytes)

0 7 2 3 a d 8 2 f e

The function processes characters from right to left. In this example, the number of characters in the input
is odd. For this reason, the hexadecimal sequence has a prefix of “O” and is reflected in the output.

Reference Manual: Building Blocks
398 PUBLIC Transact-SQL Functions

Example 2

Converts the alphanumeric string of a local variable called <@str data> to a sequence of hexadecimal

digits equivalent to the value of “723ad82fe":

declare @str data varchar (30)

select @str data = "723ad82fe"
select strtobin(@str data)
go
0x0723ad82fe
Usage

e Anyinvalid characters in the input results in NULL as the output.

e The input sequence of hexadecimal digits must have a prefix of “Ox".

e ANULL input results in NULL output.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute strtobin.

Related Information

bintostr [page 79]

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

399

3.175 stuff

Returns the string formed by deleting a specified number of characters from one string and replacing them
with another string.

Syntax

stuff (<char exprl> | <uchar exprl>, <start>, <length>, <char expr2> |
<uchar expr2>)

Parameters

<char_exprl>
is a character-type column name, variable, or constant expression of char, varchar,
nchar, or nvarchar type.

<uchar_exprl>
is a character-type column name, variable, or constant expression of unichar or
univarchar type.

<start>
specifies the character position at which to begin deleting characters.

<length>
specifies the number of characters to delete.

<char_expr2>
is another character-type column name, variable, or constant expression of char,
varchar, nchar, Or nvarchar type

<uchar_ expr2>

is another character-type column name, variable, or constant expression of unichar or

univarchar type.

Examples

Example 1

Returns a string formed by deleting from the second character for three characters, and replacing them
Wlth leyll Vlyy|l and "Z”:

select stuff ("abc", 2, 3, "xyz")

Reference Manual: Building Blocks
400 PUBLIC Transact-SQL Functions

axyz
Example 2

Returns a string formed by deleting from the second character for three characters, and replacing the
deleted characters with NULL:

select stuff ("abcdef", 2, 3, null)

go

aef
Example 3

Returns a string formed by deleting from the second character for three characters, and replacing the
deleted characters with nothing else:

select stuff ("abcdef", 2, 3, "")

a ef

Usage

® stuff, astring function, deletes <length >characters from< char exprl>or <uchar exprl>at
<start>, theninserts <char expr2>or<uchar expr2 >into<char exprl >0r <uchar expr2>at
<start>. For general information about string functions, see Transact-SQL Users Guide.

e |f the start position or the length is negative, a NULL string is returned. If the start position is zero or longer
than <expr1>, a NULL string is returned. If the length to be deleted is longer than <exprl>, <exprl>is
deleted through its last character (see Example 1).

e |f the start position falls in the middle of a surrogate pair, start is adjusted to be one less. If the start length
position falls in the middle of a surrogate pair, length is adjusted to be one less.

e Touse stuff to delete a character, replace <expr2> with NULL rather than with empty quotation marks.
Using " "' to specify a null character replaces it with a space (see examples 2 and 3).

® |[f<char exprl>or<uchar exprl>isNULL, stuff returns NULL. If <char exprl>or
<uchar exprl>isastringvalueand <char expr2>or< uchar expr2>is NULL, stuff replaces the
deleted characters with nothing.

e |fyou give avarchar expression as one parameter and a unichar expression as the other, the varchar
expression is implicitly converted to unichar (with possible truncation).

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 401

Permissions

Any user can execute stuff.

Related Information

replicate [page 307]
substring [page 402]

3.176 substring

Returns the string formed by extracting the specified number of characters from another string.

Syntax

substring (<expression>, <start, length>)

Parameters

<expression>

is a binary or character column name, variable, or constant expression. Can be char,

nchar, unichar, varchar, univarchar, or nvarchar data, binary, or varbinary

<start>
specifies the character position at which the substring begins.
<length>
specifies the number of characters in the substring.
Examples
Example 1

Displays the last name and first initial of each author, for example, “Bennet A.":

select au lname, substring(au fname, 1, 1)

Reference Manual: Building Blocks
402 PUBLIC Transact-SQL Functions

from authors
Example 2

Converts the author’s last name to uppercase, then displays the first three characters:

select substring(upper (au_ lname), 1, 3)
from authors

Example 3

Concatenatespub_idand title id, then displays the first six characters of the resulting string:

select substring((pub_id + title id), 1, 6)
from titles

Example 4

Extracts the lower four digits from a binary field, where each position represents two binary digits:

select substring(xactid, 5, 2)
from syslogs

Usage

substring, a string function, returns part of a character or binary string. For general information about
string functions, see Transact-SQL Users Guide.

If substring's second argumentis NULL, the resultis NULL. If substring's first or third argument is
NULL, the result is blank..

If the start position from the beginning of <uchar expr1> falls in the middle of a surrogate pair, <start>
is adjusted to one less. If the start length position from the beginning of <uchar expril> falls in the middle
of a surrogate pair, <length> is adjusted to one less.

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute substring.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 403

Related Information

charindex [page 95]
patindex [page 293]
stuff [page 400]

3.177 sum

Returns the total of the values.

eliminates duplicate values before sumis applied. distinct is optional.

is a column name, constant, function, any combination of column names, constants,
and functions connected by arithmetic or bitwise operators, or a subquery. With

Syntax
sum([all | distinct] <expression>)
Parameters
all
applies sum to all values. a11 is the default.
distinct
<expression>
aggregates, an expression is usually a column name.
Examples
Example 1

Calculates the average advance and the sum of total sales for all business books. Each of these aggregate

functions produces a single summary value for all of the retrieved rows:

select avg(advance), sum(total sales)

from titles
where type = "business"

404 PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

Example 2

Used with a group by clause, the aggregate functions produce single values for each group, rather than
for the entire table. This statement produces summary values for each type of book:

select type, avg(advance), sum(total sales)
from titles
group by type

Example 3

Groups the titles table by publishers, and includes only those groups of publishers who have paid more
than $25,000 in total advances and whose books average more than $15 in price:

select pub id, sum(advance), avg(price)

from titles

group by pub_ id

having sum(advance) > $25000 and avg(price) > $15

Usage

® sum, an aggregate function, finds the sum of all the values in a column. sum can only be used on numeric
(integer, floating point, or money) datatypes. Null values are ignored in calculating sums.

e When you sum integer data, the SAP ASE server treats the result as an int value, even if the datatype of
the columnis smallint or tinyint.Whenyou sumbigint data, the SAP ASE server treats the result as
abigint.To avoid overflow errors in DB-Library programs, declare all variables for results of averages or
sums appropriately.

® You cannot use sum with the binary datatypes.

e This function defines only numeric types; use with Unicode expressions generates an error.

See also:

® compute clause, group by and having clauses, select, where clause in Reference Manual: Commands
e Transact-SQL Users Guide

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute sum.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 405

Related Information

Expressions [page 468]
count [page 119]

max [page 256]

min [page 259]

3.178 suser_id

Returns the server user’s ID number from the syslogins table.

Syntax

suser id([<server user name]>)

Parameters

<server_user_name>

is an SAP ASE login name.

Examples

Example 1

Returns the server user's ID number:

select suser id()

Example 2

Returns the ID number for margaret:

select suser_id("margaret")

406 PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

Usage

® suser id, asystem function, returns the server user’'s ID humber from syslogins. For general
information about system functions, see Transact-SQL Users Guide.
e Tofind the user’s ID in a specific database from the sysusers table, use the user id system function.

® |[fno<server user name>issupplied, suser idreturns the server ID of the current user.

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute suser_id.

Related Information

suser_name [page 407]
user_id [page 430]

3.179 suser_name

Returns the name of the current server user, or the user whose server ID is specified.

Syntax

suser name ([<server user id>])

Parameters

<server user id>

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 407

is an SAP ASE user ID.

Examples

Example 1

Returns the name of the current user:

select suser name ()

Example 2

Returns the name of the user whose server ID is 4:

select suser name (4)

margaret

Usage

See alsoTransact-SQL Users Guide .

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute suser name.

Related Information

suser_id [page 406]
user_name [page 431]

408 PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

3.180 syb_quit

Terminates the connection.

Syntax

syb_quit ()

Examples

Example 1

Terminates the connection in which the function is executed and returns an error message.

select syb quit()

CT-LIBRARY error:
ct results(): network packet layer:
internal net library error: Net-Library operation terminated due to disconnect

Usage

You can use syb_quit to terminate a script if the 1sgl preprocessor command exit causes an error.

Permissions

Any user can execute syb_quit.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 409

3.181 syb_sendmsg

(UNIX only) Sends a message to a User Datagram Protocol (UDP) port.

Syntax

syb sendmsg <ip address>, <port number>, <message>

Parameters

<ip_address>

is the IP address of the machine where the UDP application is running.
<port_number>

is the port number of the UDP port.
<message>

is the message to send. It can be up to 255 characters in length.

Examples

Example 1

Sends the message “Hello" to port 3456 at IP address 120.10.20.5:

select syb sendmsg("120.10.20.5", 3456, "Hello")
Example 2

Reads the IP address and port number from a user table, and uses a variable for the message to be sent:

declare @msg varchar (255)
select @msg = "Message to send"
select syb sendmsg (ip address, portnum, @Gmsg)
from sendports
where username = user name ()

Usage

e To enable the use of UDP messaging, a System Security Officer must set the configuration parameter
allow sendmsgtol

Reference Manual: Building Blocks
410 PUBLIC Transact-SQL Functions

e No security checks are performed with syb _sendmsg. We strongly recommend that you not use
syb_sendmsg to send sensitive information across the network. By enabling this functionality, the user
accepts any security problems that result from its use.

® For asample C program that creates a UDP port, see sp_sendmsg.

e Seealso sp_sendmsg in Reference Manual: Procedures

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Anyusercanexecutesyb_sendmsg.

3.182 sys_tempdbid

(Cluster environments only) Returns the id of the effective local system temporary database of the specified
instance. Returns the id of the effective local system temporary database of the current instance when
<instance_ id> is not specified.

Syntax

sys tempdbid(<instance id>)

Parameters
<instance_id>

ID of the instance.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 411

Examples

Example 1

Returns the effective local system temporary database id for the instance with an instance id of 3:

select sys tempdbid(3)

Usage

If you do not specify an instance ID, sys tempdbid returns the ID of the effective local system temporary
database for the current instance.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user canrun sys_tempdbid.

3.183 tan

Calculates the tangent of the angle, specified in radians.

Syntax

tan (<angle>)

Parameters

<angle>

Reference Manual: Building Blocks
412 PUBLIC Transact-SQL Functions

is the size of the angle in radians, expressed as a column name, variable, or expression
of type float, real, double precision, orany datatype that can be implicitly
converted to one of these types.

Examples

Example 1

Calculates the tangent of 60:

select tan(60)

0.320040

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute tan.

Related Information

atan [page 67]
atn2 [page 68]
degrees [page 168]
radians [page 302]

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 413

3.184 tempdb_id

Reports the temporary database to which a given session is assigned. The input of the tempdb_id functionis a
server process ID, and its output is the temporary database to which the process is assigned. If you do not
provide a server process, tempdb_id reports the dbid of the temporary database assigned to the current
process.

Syntax

tempdb id ()

Examples

Example 1

Finds all the server processes that are assigned to a given temporary database:

select spid from master..sysprocesses
where tempdb id(spid) = db_id("tempdatabase")

Usage

select tempdb id givesthe sameresultas select <@@tempdbid>.

See also select in Reference Manual: Commands.

3.185 textptr

Returns a pointer to the first page, or ID of the home data row that references the first page, of a text, image,
or unitext column.

Syntax

textptr (<column name> [, "ftp"])

Reference Manual: Building Blocks
414 PUBLIC Transact-SQL Functions

Parameters

<column_name>

is the name of a text column.

ftp
Returns a NULL text pointer, or a pointer to the first page.

Examples

Example 1

Uses the textptr function to locate the text column, copy, associated with au_id 486-29-1786 in the
author's blurbs table. The text pointer is placed in local variable @<val> and supplied as a parameter to
the readtext command, which returns 5 bytes, starting at the second byte (offset of 1):

declare @val binary(16)
select @Qval = textptr(copy) from blurbs
where au id = "486-29-1786"
readtext blurbs.copy @val 1 5

Example 2

Selects the title idcolumn and the 16-byte text pointer of the copy column from the blurbs table:

select au id, textptr(copy) from blurbs

Usage

® textptr, atextandimage function, returns the text pointer value, a 16-byte varbinary value.

® The textptr value returned for an in-row LOB column residing in a data-only-locking data row that is row-
forwarded remains unchanged and valid after the forwarding.

® textptr returns apointer to the ID of home data row for a text, unitext, or image column:

If no non-null values are inserted into the For example:
columnby insert orupdate
create table mytab(c int int, c text text null)

go
insert into mytab(c_int) values(1l)

go

statements.

If the column is updated to NULL by an For example:
update statement, while the table's
dealloc_first_txtpgaﬂhbuwis ;geate table mytab(c_int int, c text text null)

settol. sp_chgattribute mytab, "dealloc first txtpg", 1

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 415

go
insert into mytab values(l, 'aaa')

go

update mytab set c text = NULL where c int =1
go

select textptr(c text) from mytab

go

If the column is updated to NULL by an For example:

update statement, while:
sp_dboption mydb, "deallocate first text

o Thetable's page", TRUE
dealloc first txtpg go
attribute is not set to 2, and ;ze Tes
© The database option deallocate create table mytab(c_int int, c_ text text null)
£i [go
irst text pageissetto insert into mytab values(l, 'aaa')
true. go
update mytab set c text = NULL where c int =1
go
select textptr (c text) from mytab
go

The column has non-NULL values, but
replication is enabled for the table to
which this column belongs.

In all other cases, textptr returns a pointer to the first page of a text, image, or unitext column.

i Note

Trailing f in varbinary values are truncated when they are stored in tables. If storing text pointer values in
atable, use binary as the column's datatype.

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute textptr.

Related Information

text, image, and unitext Datatypes [page 33]

Reference Manual: Building Blocks
416 PUBLIC Transact-SQL Functions

textvalid [page 417]

3.186 textvalid

Returns 1if the pointer to the specified text, unitext, in-row, and off-row LOB columns is valid; O if it is not.

Syntax

textvalid("<table name>.<column name>", <textpointer>)

Parameters

<table name>.<column_name>

is the name of a table and its text column.
<textpointer>

is a text pointer value.

Examples

Example 1

Reports whether a valid text pointer exists for each value in the blurb column of the texttest table:

select textvalid ("texttest.blurb", textptr(blurb)) from texttest

Usage

® textvalid checks that a given text pointer is valid. Returns 1if the pointer is valid, or O if it is not.

e The identifier for the column must include the table name.

For general information about text and image functions, see Transact-SQL Users Guide.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC

417

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute textvalid.

Related Information

text, image, and unitext Datatypes [page 33]
textptr [page 414]

3.187 to_unichar

Returns aunichar expression having the value of the specified integer expression.

Syntax

to_unichar (<integer expr>)

Parameters

<integer_ expr>
isany integer (tinyint, smallint, or int) column name, variable, or constant
expression.

Usage

® to unichar, astring function, converts a Unicode integer value to a Unicode character value.

e [faunichar expression refers to only half of a surrogate pair, an error message appears and the operation
is aborted.

Reference Manual: Building Blocks
418 PUBLIC Transact-SQL Functions

® [fa<integer expr>isNULL, to unichar returns NULL.

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute to unichar.

Related Information

text, image, and unitext Datatypes [page 33]
char [page 91]

3.188 tran_dumpable_status

Returns a true/false indication of whether dump transactionis allowed.

Syntax

tran dumpable status ("<database name>")

Parameters

<database name>

is the name of the target database.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 419

Examples

Example 1

Checks to see if the pubs2 database can be dumped:

1> select tran dumpable status ("pubs2")
2> go

106
(1 row affected)

In this example, you cannot dump pubs2. The return code of 106 is a sum of all the conditions met (2, 8,
32, 64). See the Usage section for a description of the return codes.

Usage

tran dumpable status allows you to determine if dump transaction is allowed on a database without having
torunthe command. tran dumpable status performs all of the checks that the SAP ASE server performs
when dump transaction is issued.

If tran dumpable status returns O, you can perform the dump transaction command on the database. If
it returns any other value, it cannot. The non-0 values are:

e 1 - Adatabase with the name you specified does not exist.

o 2 - Alogdoes not exist on a separate device.

® 4 -The log first page is in the bounds of a data-only disk fragment.

e 8-thetrunc log on chkpt optionis set for the database.

® 16 - Non-logged writes have occurred on the database.

e 32 —Truncate-only dump tran has interrupted any coherent sequence of dumps to dump devices.

e 64 - Database is newly created or upgraded. Transaction log may not be dumped untila dump database
has been performed.

e 128 — Database durability does not allow transaction dumps.

e 256 — Database is read-only. dump transaction started atransaction, which is not allowed on read-only
databases.

e 512 — Database is online for standby access. dump transaction started atransaction, which is not
allowed on databases in standby access because the transaction would disturb the load sequence.

e 1024 - Database is an archive database, which do not support dump transaction.

See also: dump transaction in Reference Manual: Commands

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
420 PUBLIC Transact-SQL Functions

Permissions

Any user can execute tran_dumpable_status.

3.189 tsequal

Compares timestamp values to prevent update on a row that has been modified since it was selected for
browsing.

Syntax

tsequal (<browsed row timestamp>, <stored row timestamp>)

Parameters

<browsed_row_timestamp>

is the timestamp column of the browsed row.

<stored_row_timestamp>

is the timestamp column of the stored row.

Examples

Example 1

Retrieves the timestamp column from the current version of the publishers table and compares it to
the value in the t imestamp column that has been saved. To add the timestamp column:

alter table publishers add timestamp

If the values in the two t imestamp columns are equal, tsequal updates the row. If the values are not
equal, tsequal returns the error message below:

update publishers

set city = "Springfield"

where pub id = "0736"

and tsequal (timestamp, 0x0001000000002ea8)

Msg 532, Level 16, State 2:
Server '<server name>', Line 1:

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 421

The timestamp (changed to 0x0001000000002ea8) shows that the row has been
updated by another user.

Command has been aborted.

(0 rows affected)

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute tsequal.

3.189.1 Usage for ::cqua:

There are additional considerations for using tsequal.

tsequal, a system function, compares the t imestamp column values to prevent an update on a row that
has been modified since it was selected for browsing. For general information about system functions, see
Transact-SQL Users Guide.

tsequal allows you to use browse mode without calling the dbqual function in DB-Library. Browse mode
supports the ability to perform updates while viewing data. It is used in front-end applications using Open

Client and a host programming language. A table can be browsed if its rows have been timestamped.

To browse a table in a front-end application, append the for browse keywords to the end of the select

statement sent to the SAP ASE server. For example:

<Start of select statement in an Open Client application>

for browse
<Completion of the Open Client application routine>
Do not use tsequal in the where clause of a select statement; only in the where clause of insert and
update statements where the rest of the where clause matches a single unique row.
If you use a timestamp column as a search clause, compare it like a regular varbinary column; that is,

timestampl = timestamp2

See also Transact-SQL Users Guide.

422

Reference Manual: Building Blocks
PUBLIC Transact-SQL Functions

Adding a Timestamp to an Existing Table

To prepare an existing table for browsing, add a column named timestamp using alter table.Forexample,
to add a timestamp column with a NULL value to each existing row:

alter table oldtable add timestamp

To generate a timestamp, update each existing row without specifying new column values:

update oldtable
set coll = coll

Related Information

timestamp Datatype [page 19]

3.189.1.1 Adding a Timestamp to a New Table for Browsing

When creating a new table for browsing, include a column named timestamp in the table definition.
The column is automatically assigned a datatype of timestamp; you do not have to specify its datatype.
For example:

create table newtable(coll int, timestamp, col3 char (7))

Whenever you insert or update a row, the SAP ASE server timestamps it by automatically assigning a unique
varbinary value to the timestamp column.

3.190 uhighsurr

Returns 1if the Unicode value at position start is the higher half of a surrogate pair (which should appear first
in the pair). Otherwise, returns O. This function allows you to write explicit code for surrogate handling.

Syntax

uhighsurr (<uchar expr>, start)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 423

Parameters

<uchar_expr>

is a character-type column name, variable, or constant expression of unichar or

univarchar type.

start
specifies the character position to investigate.

Usage

® uhighsurr, astring function, allows you to write explicit code for surrogate handling. Specifically, if a
substring starts on a Unicode character where uhighsurr is true, extract a substring of at least 2 Unicode
values (<substr> does not extract half of a surrogate pair).

® |f <uchar expr>< >is NULL, uhighsurr returns NULL.

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute uhighsurr.

Related Information

ulowsurr [page 425]

Reference Manual: Building Blocks
424 PUBLIC Transact-SQL Functions

3.191 ulowsurr

Returns 1if the Unicode value at <start> is the low half of a surrogate pair (which should appear second in the
pair). Otherwise, returns O. This function allows you to explicitly code around the adjustments performed by
substr (), stuff (),and right ().

Syntax

ulowsurr (<uchar expr>, start)

Parameters

<uchar_expr>

is a character-type column name, variable, or constant expression of unichar or

univarchar type.

start

specifies the character position to investigate.

Usage

® ulowsurr, a string function, allows you to write explicit code around adjustments performed by substr,
stuff, and right. Specifically, if a substring ends on a Unicode value where ulowsurr is true, the user
knows to extract a substring of 1 less characters (or 1 more). substr does not extract a string that
contains an unmatched surrogate pair.

® [f<uchar expr>< >isNULL, ulowsurr returns NULL.

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute ulowsurr.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 425

Related Information

uhighsurr [page 423]

3.192 upper

Converts specified lowercase string to the uppercase equivalent.

Syntax

upper (<char expr>)

Parameters

<char_expr>

is a character-type column name, variable, or constant expression of char, unichar,

varchar, nchar, nvarchar, orf univarchar type.

Examples

Example 1

Converts "abcd" to uppercase letters:

select upper ("abcd")

ABCD

Usage

® upper, a string function, converts lowercase to uppercase, returning a character value.

® |[f<char expr >0r< uchar expr >is NULL, upper returns NULL.

e (Characters that have no upper-ase equivalent are left unmodified.

e [faunichar expression is created containing only half of a surrogate pair, an error message appears and
the operation is aborted.

Reference Manual: Building Blocks
426 PUBLIC Transact-SQL Functions

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute upper.

Related Information

lower [page 248]

3.193 uscalar

Returns the Unicode scalar value for the first Unicode character in an expression.

Syntax

uscalar (<uchar expr>)

Parameters

<uchar_expr>

is a character-type column name, variable, or constant expression of unichar, or

univarchar type.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 427

Usage

® uscalar, a string function, returns the Unicode value for the first Unicode character in an expression.
® |[f<uchar expr>is NULL, returns NULL.

® [fuscalariscalledona<uchar expr>containing an unmatched surrogate half, and error occurs and
the operation is aborted.

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute uscalar.

Related Information

ascii [page 63]

3.194 user

Returns the name of the current user.

Syntax

user

Reference Manual: Building Blocks
428 PUBLIC Transact-SQL Functions

Examples

Example 1
Returns the name of the current user:

select user

Usage
If the sa_roleis active, you are automatically the database owner in any database you are using. Inside a

database, the user name of the database owner is always “dbo”.

See also Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute user.

Related Information

user_name [page 431]

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 429

3.195 user_id

Returns the ID number of the specified user or of the current user in the database.

Syntax

user id([<user name>])

Parameters

<user_name>

is the name of the user.

Examples

Example 1

Returns the ID number of the current user:

select user id()

Example 2

Returns the ID number for user margaret:

select user id("margaret")

Usage

® user id,asystem function, returns the user’'s ID number. For general information about system
functions, see Transact-SQL Users Guide.

® user idreportsthe number from sysusers in the current database. If no <user name> is supplied,
user_idreturns the ID of the current user. To find the server user ID, which is the same number in every
database on the SAP ASE server, use suser_id.

Reference Manual: Building Blocks
430 PUBLIC Transact-SQL Functions

® Inside a database, the “guest” user ID is always 2.

® |Inside a database, the user id of the database owner is always 1. If you have the sa_role active, you are
automatically the database owner in any database you are using. To return to your actual user ID, use
set sa_role off before executinguser_ id. If you are not avalid user in the database, the SAP ASE
server returns an error when you use set sa_role off.

See also:

® setuser in Reference Manual: Commands
e Transact-SQL Users Guide

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute user id.

Related Information

suser_id [page 406]
user_name [page 431]

3.196 user_name

Returns the name within the database of the specified user or of the current user.

Syntax

user name ([<user_ id>])

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 431

Parameters

<user_id>

is the ID of a user.

Examples

Example 1

Returns the name within the database of the current user:

select user name ()

Example 2

Returns the name within the database with user ID 4:

select user name (4)

margaret

Usage

Ifthe sa_roleis active, you are automatically the database owner in any database you are using. Inside a
database, the user name of the database owner is always “dbo"

See also Transact-SQL Users Guide.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

You must be a user with sa_roleor sso_role to use this function on auser id other than your own.

Reference Manual: Building Blocks
432 PUBLIC Transact-SQL Functions

Related Information

suser_name [page 407]
user_id [page 430]

3.197 valid_name

Returns O if the specified string is not a valid identifier or a number other than O if the string is a valid identifier,

and can be up to 255 bytes in length.

Syntax

valid name (<character expression>[, <maximum length>])

Parameters

<character_expression>

is a character-type column name, variable, or constant expression of char, varchar,
nchar or nvarchar type. Constant expressions must be enclosed in quotation marks.

<maximum_ length>

is an integer larger than O and less than or equal to 255. The default value is 30. If the

identifier length is larger than the second argument, valid name returns O, and
returns a value greater than zero if the identifier length is invalid.

Examples

Example 1

Creates a procedure to verify that identifiers are valid:

create procedure chkname
@name varchar (30)
as
if valid name (@name) = 0
print "name not valid"

Reference Manual: Building Blocks
Transact-SQL Functions

PUBLIC

433

Usage

® valid name, asystem function, returns O if the <character expression> isnota valid identifier
(illegal characters, more than 30 bytes long, or a reserved word), or a number other than O if it is a valid
identifier.

e The SAP ASE server identifiers can be a maximum of 16384 bytes in length, whether single-byte or
multibyte characters are used. The first character of an identifier must be either an alphabetic character,
as defined in the current character set, or the underscore (_) character. Temporary table names, which
begin with the pound sign (#), and local variable names, which begin with the at sign (@), are exceptions to
this rule. valid name returns O for identifiers that begin with the pound sign (#) and the at sign (@).

See also:

e Transact-SQL Users Guide
® sp checkreswords in Reference Manual: Procedures

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute valid name.

3.198 valid_user

Returns 1if the specified ID is a valid user or alias in at least one database.

Syntax

valid user (<server user id> [, <database id>])

Parameters

<server user id>

is a server user ID. Server user IDs are stored in the suid column of syslogins.

Reference Manual: Building Blocks
434 PUBLIC Transact-SQL Functions

<database_id>

is the ID of the database on which you are determining if the user is valid. Database IDs
are stored in the dbid column of sysdatabases.

Examples

Example 1

Shows that the user with an suid of 4 is a valid user or alias in at least one database:

select valid user (4)

Example 2

Shows that the user with an suid of 4 is a valid user or alias in the database with an ID of 6.

select valid user (4, 6)

Usage

® valid userreturnslifthe specified <server user id>isavalid user or alias in the specified
<database id>

e |fyou donot specify a <database id>,orifitisO, valid user determines if the user is a valid user or
alias on at least one database.

See also:

e Transact-SQL Users Guide
® sp adduser in Reference Manual: Procedures

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

The permission checks for valid user differ based on your granular permissions settings.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 435

Granular Description

Permissions
Enabled With granular permissions enabled, you must have manage any login ormanage
server permission to execute valid user onaserver user id otherthan your
own.
Disabled With granular permissions disabled, you must be a user with sa_role or sso_roleto
execute valid useronaserver user id otherthanyourown.
Auditing

You can enable security auditing option to audit this function. Values in event and extrainfo columns
from the sysaudits table are:

Audit option Event Command or access audited Informationin extrainfo:

security 86 valid user ® Roles — Current active roles
® Keywords or options — VALID USER
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.199 var

Computes the statistical variance of a sample consisting of a numeric expression, as a double, and returns the
variance of a set of numbers.

i Note

var and variance are aliases of var_samp.

Syntax

Seevar samp.

Reference Manual: Building Blocks
436 PUBLIC Transact-SQL Functions

Related Information

var_samp [page 439]

3.200 var_pop

Computes the statistical variance of a population consisting of a numeric expression, as a double. varp is an
alias for var pop, and uses the same syntax.

Syntax
var pop ([all | distinct] <expression>)
Parameters
all
applies var pop to all values. a1l is the default.
distinct
eliminates duplicate values before var pop is applied.
<expression>
is an expression—commonly a column name—in which its population-based variance is
calculated over a set of rows.
Examples
Example 1

Lists the average and variance of the advances for each type of book in the pubs2 database:

select type, avg(advance) as "avg", var pop (advance)
as "variance" from titles group by type order by type

Usage

Computes the population variance of the provided value expression evaluated for each row of the group (if
distinct was specified, then each row that remains after duplicates have been eliminated), defined as the

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 437

sum of squares of the difference of value expression, from the mean of value expression, divided by the number
of rows in the group or partition.

The formula that defines the variance of population of size n
having mean y (var_pop) is presented below. The population
standard deviation (stddev_pop) is the positive square root of

this number.
2 .
5 O Variance
2 _ Z (x; — 4) o
O =— n Population size
n ﬂ Mean of the values X :

For general information about aggregate functions, see Aggregate Functions in Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute var pop.

Related Information

stddev_pop [page 389]
stddev_samp [page 391]
var_samp [page 439]

Reference Manual: Building Blocks
438 PUBLIC Transact-SQL Functions

3.201 var_samp

Computes the statistical variance of a sample consisting of a numeric-expression, as a double, and returns
the variance of a set of numbers. var and variance are aliases of var_samp, and use the same syntax.

Syntax
var samp ([all | distinct] <expression>)

Parameters
all

applies var samp to all values. al1 is the default.
distinct

eliminates duplicate values before var samp is applied.
<expression>

is any numeric datatype (float, real, or double) expression.
Examples

Example 1

Lists the average and variance of the advances for each type of book in the pubs2 database:

select type, avg(advance) as "avg", var samp (advance)
as "variance" from titles where
total sales > 2000 group by type order by type

Usage

var_ samp returns a result of double-precision floating-point datatype. If applied to the empty set, the result is
NULL.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 439

The formula that defines the variance of population of size n
having mean X (var_samp) is presented below. The
population standard deviation (stddev_samp) is the positive
square root of this number.

2
S Variance

o T

n— 1 X Mean of the values X

1 Population size

For general information about aggregate functions, see Aggregate Functions in Transact-SQL Users Guide.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute var samp.

Related Information

stddev_pop [page 389]
stddev_samp [page 391]
var_pop [page 437]

3.202 variance
Computes the statistical variance of a sample consisting of a numeric expression, as a double, and returns the
variance of a set of numbers.

i Note

var and variance are aliases of var samp.

Reference Manual: Building Blocks
440 PUBLIC Transact-SQL Functions

Syntax

Seevar_ samp.

Related Information

var_samp [page 439]

3.203 varp

Computes the statistical variance of a population consisting of a numeric expression, as a double.

i Note

varp is an alias of var _pop.

Syntax

See var pop.

Related Information

var_pop [page 437]

3.204 workload_metric

(Cluster environments only) Queries the current workload metric for the instance you specify, or updates the
metric for the instance you specify.

Syntax

workload metric(<instance id> | <instance name> [, <new value>])

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 441

Parameters

<instance_id>

ID of the instance.
<instance_name>

name of the instance.
<new_value>

float value representing the new metric.

Examples

Example 1

Sees the user metric on the current instance:

select workload metric()
Example 2
Sees the user metric on instance “ase2™:
select workload metric("ase2")
Example 3

Sets the value of the user metric on "ase3" to 27.54:

select workload metric("ase3", 27.54)

Usage

e ANULL value indicates the current instance.

e [favalueis specified for <new value>, the specified value becomes the current user metric. If a value is
not specified for <new value>, the current workload metric is returned.

® The value of <new_value>must be zero or greater.

e [favalueis supplied for <new _value>, workload metric returnsthat value if the operationis
successful. Otherwise, workload metric returns-1.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks
442 PUBLIC Transact-SQL Functions

Permissions

The permission checks for workload metric differ based on your granular permissions settings.

Granular Description
Permissions
Enabled With granular permissions enabled, you must have manage cluster permission or be

auser withha role toexecute workload metric.

Disabled With granular permissions disabled, you must be a user with sa_role orha roleto

execute workload metric.

Auditing

You can enable security auditing option to audit this function. Values in event and extrainfo columns
from the sysaudits table are:

Audit option Event = Command or access audited Information in extrainfo:

security 86 workload metric ® Roles - Current active roles
® Keywords or options — WORKLOAD METRIC
® Previous value — NULL
e Current value — NULL
e Other information — NULL
® Proxy information — Original login name, if set

proxy in effect

For more information about auditing, see Security Administration Guide > Auditing.

3.205 xa_bqual

Returns the binary version of the bqual component of an ASCII XA transaction ID.

Syntax

xa bqual (<xid>, 0)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 443

Parameters

<xid>
is the ID of an SAP ASE transaction, obtained from the xactname columnin
systransactionsOFﬂOhﬂsp_transactions
0
is reserved for future use
Examples
Example 1

Returns “0x227f06ca80", the binary translation of the branch qualifier for the SAP ASE transaction ID
“O000000A_IphlT596iC7bF2#AUfkzaM_8DY60OEQ". The SAP ASE transaction ID is first obtained using

sp_transactions:

1> sp transactions

xactkey type coordinator starttime state

connection dbid spid loid failover srvname namelen xactname
0x531600000600000017e4885b0700 External XA Dec 9 2005 5:15PM In
Command Attached 7 20 877 Resident Tx NULL 39

0000000A IphIT596iC7bF2#AUfkzaM 8DY6O0EOQ

1> select xa bqual ("0000000A IphIT596iC7bF2#AUfkzaM 8DY6OEO", O0)
2> go

0x227f06ca80
Example 2

xa_bqual is often used together with xa_gtrid. This example returns the global transaction IDs and
branch qualifiers from all rows in systransactions where its coordinator column is the value of “3":

1> select gtrid=xa gtrid(xactname,0),
bgual=xa bqual (xactname, 0)

from systransactions where coordinator = 3
2> go
gtrid
bqual

0xbl946cdc52464a6lcbad2fede0f5232b
0x227f06ca80

Reference Manual: Building Blocks
444 PUBLIC Transact-SQL Functions

Usage

If an external transaction is blocked on the SAP ASE server and you are using sp_lock and
sp_transactions toidentify the blocking transaction, you can use the XA transaction manager to terminate
the global transaction. However, when you execute sp_transactions, the value of <xactname> it returns is
in ASCII string format, while XA Server uses an undecoded binary value. Using xa_bqual thus allows you to
determine the bgual portion of the transaction name in a format that can be understood by the XA transaction
manager.

xa_bqual returns:

e The translated version of this string that follows the second “_" (underscore) and precedes either the third
“_" or end-of-string value, whichever comes first.
e NULL if the transaction ID cannot be decoded, or is in an unexpected format.

i Note

xa_bqual does not perform a validation check on the xid, but only returns a translated string.

Seealso sp lock, sp_transactions in Reference Manual: Procedures.

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can use xa_bqual.

Related Information

xa_gtrid [page 446]

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 445

3.206 xa_gtrid

Returns the binary version of the gt rid component of an ASCII XA transaction ID.

Syntax

xa gtrid(<xactname>, <int>)

Parameters

<xid>

is the ID of an SAP ASE transaction, obtained from the xactname columnin

systransactionsOFﬂOhﬂsp_transactions

is reserved for future use

Examples

Example 1

In this typical situation, returns “0x227f06ca80," the binary translation of the branch qualifier, and
“0Oxb1946cdc52464a61cbad2fe4e0f5232b," the global transaction ID, for the SAP ASE transaction ID
“O000000A_IphIT596iC7bF2#AUfkzaM_8DY60OEO™:

1> select xa gtrid("0000000A IphIT596iC7bF2#AUfkzaM 8DY6OEQO", O0)
2> go

0xbl946cdc52464a6lcbad2fede0£5232b
(1 row affected)

Example 2

xa_bqual is often used together with xa_gtrid. This example returns the global transaction IDs and
branch qualifiers from all rows in systransactions where its coordinator column is the value of “3":

1> select gtrid=xa gtrid(xactname,0),
bgual=xa bqual (xactname, 0)
from systransactions where coordinator = 3
2> go

gtrid

Reference Manual: Building Blocks
446 PUBLIC Transact-SQL Functions

0xb1946cdc52464a6lcbad2fede0f5232b
0x227f06ca80

Usage

If an external transaction is blocked on the SAP ASE server and you are using sp_lock and
sp_transactions toidentify the blocking transaction, you can use the XA transaction manager to terminate
the global transaction. However, when you execute sp_transactions, the value of <xactname> it returns is
in ASCII string format, while XA Server uses an undecoded binary value. Using xa_gtrid thus allows you to
determine the gt rid portion of the transaction name in a format that can be understood by the XA transaction
manager.

xa_gtridreturns:

® The translation version of tis string that follows the first “_" (underscore) and precedes either the second
“_"or end-of-string value, whichever comes first.

e NULL if the transaction ID cannot be decoded, or is in an unexpected format.

i Note

xa_gtrid does not perform a validation check on the xid, but only returns a translated string.

Seealso sp_lock, sp_transactions in Reference Manual: Procedures.

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user canuse xa_gtrid.

Related Information

xa_bqual [page 443]

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 447

3.207 xact_connmigrate_check

(Cluster environments only) Determines whether or not a connection can process an external transaction.

Syntax

xact connmigrate check(“<txn name>")

Parameters

<txn_name>

(optional) is a transaction ID.

Examples

Example 1

Shows an XA transaction “txn_name” running on instance “asel".

select xact connmigrate check("txn name")

Example 2

Shows an XA transaction “txn_name” running on instance “ase2” The connection can migrate.

select xact connmigrate check("txn name")

Example 3

Shows an XA transaction “txn_name” running on instance “ase2”. The connection cannot migrate.

select xact connmigrate check("txn name")

Reference Manual: Building Blocks
448 PUBLIC Transact-SQL Functions

Usage

Ifan XID is specified, xact connmigrate checkreturns:

e 1if the connection is to the instance running the specified transaction, or the connection is to another
instance in a migratable state

e (if the connection or transaction ID does not exist, or the connection is to another instance thatis notin a
migratable state

If an XID is not specified, xact _connmigrate check returns:

e 1ifthe connectionisin a migratable state
e (if the connection does not exist or is not in a migratable state

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute xact connmigrate check.

Related Information

xact_owner_instance [page 449]

3.208 xact_owner_instance

(Cluster environments only) Returns the instance ID on which the distributed transaction is running.

Syntax

xact_owner_instance ("<txn name>")

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 449

Parameters

<txn_name>

is a transaction ID.

Examples

Example 1

Shows an XA transaction “txn_name" running on instance “asel”:

select xact owner instance (txn name)

Example 2

Shows an XA transaction “txn_name” not running:

select xact owner instance (txn name)

Usage

xact owner instance returns:

e Theinstance ID of the instance running the transaction, or
e Null, if the transaction is not running

Standards

ANSI SQL — Compliance level: Transact-SQL extension.

Permissions

Any user can execute xact owner instance.

Reference Manual: Building Blocks
450 PUBLIC Transact-SQL Functions

Related Information

xact_connmigrate_check [page 448]

3.209 xmlextract

Applies an XML query expression to an XML document and returns the specified result. Information can be
returned with or without the XML tags.
Usage

See XML Services for syntax, examples, and usage information for xmlextract and all other Transact-SQL
functions that support XML in the database.

3.210 xmlparse

Parses an XML document passed as a parameter, and returns an image (default), binary, or varbinary
value that contains a parsed form of the document.
Usage

See XML Services for syntax, examples, and usage information for xmlparse and all other Transact-SQL
functions that support XML in the database.

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 451

3.211 xmlrepresentation

Examines the image parameter of an expression, and returns an integer value that indicates whether the
parameter contains parsed XML data or another sort of image data.

Usage

See XML Services for syntax, examples, and usage information for xmlrepresentation and all other
Transact-SQL functions that support XML in the database.

3.212 xmitable

Extracts data from an XML document and returns it as a SQL table.

Usage

See XML Services for syntax, examples, and usage information for xm1table and all other Transact-SQL
functions that support XML in the database.

3.213 xmiltest

Is a SQL predicate that evaluates an XML query expression, which can reference the XML document parameter,
and returns a Boolean result. xm1test resembles a SQL 11ike predicate.

Usage

See XML Services for syntax, examples, and usage information for xm1test and all other Transact-SQL
functions that support XML in the database.

Reference Manual: Building Blocks
452 PUBLIC Transact-SQL Functions

3.214 xmlvalidate

Validates an XML document.

Usage

See XML Services for syntax, examples, and usage information for xm1validate and all other Transact-SQL
functions that support XML in the database.

3.215 year

Returns an integer that represents the year in the datepart of a specified date.

Syntax

year (<date expression>)

Parameters

<date_expression>

is an expression of type datetime, smalldatetime, date, time or a character string
inadatetime format.

Examples

Example 1

Returns the integer 03:

select year("11/02/03"™)

2003
(1 row(s) affected)

Reference Manual: Building Blocks
Transact-SQL Functions PUBLIC 453

Usage

year (<date expression>) isequivalenttodatepart (<yy>, <date expression>).

Standards

ANSI SQL - Compliance level: Transact-SQL extension.

Permissions

Any user can execute year.

Related Information

System and User-Defined Datatypes [page 13]
datepart [page 148]

day [page 152]

month [page 260]

454 PUBLIC

Reference Manual: Building Blocks
Transact-SQL Functions

4 User-Defined Functions (UDFs)

The create functioncommand allows you to create user-defined functions that return inline and multi-
statement tables.

Using table SQL UDFs offers improved modularity and encapsulation in SQL programming, allowing you to use
parameterized views or multi-statement views.

You can create these types of table user-defined functions with the create function command:

e Multi-statement table UDFs — these contains one or more statements, and will not be merged when called
with the caller statement.

e [nline table UDFs — these contain one statement when the function is called.
SAP ASE does not merge inline table UDFs.

A table UDF takes zero or more input parameters and returns table, multi-set rows. A table UDF can include up
to 1023 input parameters. You must specify the keyword DEFAULT when calling the function for the default
value if a parameter of the function has a default value. You cannot use output parameters in UDFs.

UDFs cannot:

e Make changes to database objects; they can only modify local variables inside the UDF.
® Print the result set.

e (Call stored procedures (they can call only extended stored procedures)

e Perform DDL.

e Perform DMS, except selecting data into variables.

e Perform transaction management.

e Perform modifications to database tables.

e Perform operations on cursors that are not local to the function.

e Perform catalog modifications.

® Generate aresult set that is returned to the user.

Statement similar to these are valid in UDFs:

® declare statements used to define data variables and cursors that are local to the function.
e Assigning values to objects local to the function, such as using select or set to assign values to scalar
and table local variables.

e Cursor operations that reference local cursors that are declared, opened, closed, and de-allocated in the
function. fetch statements that return data to the client are not allowed. Only fetch statements that
assign values to local variables using the into clause are allowed.

e Control-of-flow statements.

® set parameters that are valid only within the scope of the function, unless they are exportable options (for
example, the export parameter is enabled and is part of the exportable parameter list).

® insert and update statements on a table variable that are returned to the caller.

For example, if you create this table:

Create table Emp mails

Reference Manual: Building Blocks
User-Defined Functions (UDFs) PUBLIC 455

(emp id int, name varchar(30), dept id int, email varchar (1000), WeekDay
datetime)

Insert these values:

insert Emp mails values (02993, 'Alex Kospar' , 14, ' ', getdate())
insert Emp mails values (02994, 'Ahmed ben Ahmed', 45, ' ', '2007-11-02")
insert Emp mails values (02995, 'Roger Mila', 43, ' ', '2007-10-30")
insert Emp mails values (02996, 'Amida Sountra', 45, ' ', '2007-10-30")
insert Emp mails values (02997, 'Sustra Cheng', 14, ' ', '2007-10-30")
insert Emp mails values (02998, 'Olive Pressee', 56, ' ', '2007-10-29")
insert Emp mails values (03000, 'Yousri Kapa', 14, ' ', '2007-10-29")
insert Emp mails values (03001, 'Lynn Paris', 36, ' ', '2007-10-28")
insert Emp mails values (03002, 'Shella Labella', 87, ' ' , '2007-10-28")

And create this table UDF:

create function Emp dept (Qdptid int) returns table

(emp id int, name varchar (30))

as

return select emp id, name from Emp mails where dept id = @dptid

This table UDF returns all the employees of a given department that sent an email (these rows are sent to the
calling statement, not to the user):

select * from dbo.Emp dept (14)
emp id name

2993 Alex Kospar
2997 Sustra Cheng
3000 Yousri Kapa

You can also filter the results:

select name from dbo.Emp dept (14) where emp id > 2995
name

Sustra Cheng
Yousri Kapa

See Transact-SQL Users Guide > User-Created Functions > Table User-Defined Functions and create
function in the Reference Manual: Commands.

Reference Manual: Building Blocks
456 PUBLIC User-Defined Functions (UDFs)

5 Global Variables

Global variables are system-defined variables that are updated by the SAP ASE server while the systemis
running.

Some global variables are session-specific, while others are server instance-specific. For example, @Rerror
contains the last error number generated by the system for a given user connection.

To specify application context variables, use get appcontext and set _appcontext.

To view the value for any global variable, enter:
select <variable name>
For example:

select @@char convert

Many global variables report on system activity occurring from the last time the SAP ASE server was started.
sp_monitor displays the current values of some of the global variables.

The global variables available for SAP ASE are:

Global Variable Definition

@Ractive instan Returnsthe number of active instances in the cluster

ces

@@authmech A read-only variable that indicates the mechanism used to authenticate the user.
@@bootcount Returns the number of times an SAP ASE server installation has been started.
@@boottime Returns the date and time the SAP ASE server was last started.

@@bulkarraysize Returnsthe number of rows to be buffered in local server memory before being transferred using
the bulk copy interface Used only with Component Integration Services for transferring rows to a
remote server using select into. Seethe Component Integration Services User's Guide.

@Q@bulkbatchsize Returnsthe number of rows transferred to a remote servervia select into
<proxy table> usingthe bulk interface. Used only with Component Integration Services for
transferring rows to a remote server using select into. Seethe Component Integration Serv-

ices User’s Guide.

@@char convert ReturnsQif character set conversion is not in effect. Returns 1 if character set conversionis in
effect.

@@cis_rpc handl ReturnsQifcis rpc handlingisoff.Returnslifcis rpc handlingison. See the Com-

ing ponent Integration Services User's Guide.

Reference Manual: Building Blocks
Global Variables PUBLIC 457

Global Variable

Definition

@@cis_version

Returns the date and version of Component Integration Services.

@@client csexpa

nsion

Returns the expansion factor used when converting from the server character set to the client
character set. For example, if it contains a value of 2, a character in the server character set could
take up to twice the number of bytes after translation to the client character set.

@@client csid

Returns -1 if the client character set has never been initialized; returns the client character set ID
from syscharsets for the connection if the client character set has been initialized.

@@client csname

Returns NULL if client character set has never been initialized; returns the name of the character
set for the connection if the client character set has been initialized.

@@clusterbootti Returnsthe date and time the cluster was first started, even if the instance that originally started

me the cluster start has shut down.

@@clustercoordi Returnstheinstance id of the current cluster coordinator.

d

@@clustermode Returns the string: “shared-disk cluster™”.

@Q@clustername Returns the name of the cluster.

@@cmpstate Returns the current mode of the SAP ASE server in a high availability environment. Not used in a
non-high availability environment.

@@compiletime Returns the compilation time of the last compiled query.
If the statement cache is on (that is, when the enable stmt cache monitoring optionis
onandthe statement cache sizeisconfigured), the query might be stored in the system
cache itself, and as a result, it's not compiled. In this scenario, the @@compi letime calculates
the compilation time of the last compiled query.

@@connections Returns the number of user logins attempted.

@R@cpu_busy Returns the amount of time, in ticks, that the CPU has spent working since the last time the server
was started.
The value of @Guser busy + @@system busy should equal the value of @ecpu_busy.

@@cputime Returns the CPU time required to complete the query execution and get the final result. However,

this does not take into account the time spent in waiting for 1/0 and other factors.

458 PUBLIC

Reference Manual: Building Blocks
Global Variables

Global Variable Definition

@@cursor_ rows A global variable designed specifically for scrollable cursors. Displays the total number of rows in
the cursor result set. Returns:

e -1-thecursoris:

o Dynamic — because dynamic cursors reflect all changes, the number of rows that qualify
for the cursor is constantly changing. You can never be certain that all the qualified rows
are retrieved.

o semi_sensitive and scrollable, but the scrolling worktable is not yet fully populated
- the number of rows that qualify the cursor is unknown at the time this value is re-
trieved.

e (- either no cursors are open, no rows qualify for the last opened cursor, or the last open
cursor is closed or deallocated.
e <n>-thelast opened or fetched cursor result set is fully populated. The value returned is the

total number of rows in the cursor result set.

@Q@curloid Returns the current session’s lock owner ID.

@@datefirst Setusing set datefirst <n>where<n>isavalue between1and 7. Returns the current

value of @@datefirst, indicating the specified first day of each week, expressed as tinyint.

The default value in the SAP ASE server is Sunday (based on the us_language default), which you
set by specifying set datefirst 7.Seethedatefirst optionofthe set command for

more information on settings and values.

@@dbts Returns the timestamp of the current database.

Timestamp columns always display values in big-endian byte order, but on little-endian platforms,
@@dbts is displayed in little-endian byte order. To convert a little-endian @@dbt s value to a big-

endian value that can be compared with timestamp column values, use:

reverse (substring (@@dbts,1,2)) + 0x0000 +
reverse (substring (@Q@dbts, 5,4))

@@elapsedtime Returns the total time required to execute the task. @@elapsedtime

includes @@cput ime for the time spent waiting for CPU and performing 1/0 operations such as
reading files from the disk.

@@error Returns the error number most recently generated by the system.

The <@rerror> global variable is commonly used to check the error status of the most recently
executed statement in the current user session. <@@error> contains O if the last statement suc-
ceeded; otherwise, <@@error> contains the last error number generated by the system.

@Qerror is not set for severity level 10 messages.

@@errorlog Returns the full path to the directory in which the SAP ASE server error log is kept, relative to
SSYBASE directory ($SYBASES on Windows).

Reference Manual: Building Blocks
Global Variables PUBLIC 459

Global Variable

Definition

@@failedovercon

n

Returns a value greater than O if the connection to the primary companion has failed over and is
executing on the secondary companion server. Used only in a high availability environment, and is
session-specific.

@@fetch_status

Returns:

e (O - fetch operation successful.
e -1 -fetch operation unsuccessful.

e -2 —value reserved for future use.

@efips_crypto i

s _active

Returns 1if the FIPS Certified Crypto Libraries are active; otherwise returns O.

@Q@guestuserid Returns the ID of the guest user.

@@hacmpserverna Returnsthe name of the companion server in a high availability setup.

me

@@haconnection Returns a value greater than O if the connection has the failover property enabled. This is a ses-
sion-specific property.

@@heapmemsize Returns the size of the heap memory pool, in bytes. See the System Administration Guide for more
information on heap memory.

@@identity Returns the most recently generated IDENTITY column value.

@@idle Returns the amount of time, in ticks, that the SAP ASE server has been idle since it was last
started.

@@instanceid Returns the ID of the instance from which it was executed.

@@instancename Returns the name of the instance from which it was executed.

@@invaliduserid Returnsavalue of -1for aninvalid user ID.

@Rio_busy Returns the amount of time, in ticks, that the SAP ASE server has spent doing input and output
operations.

@@isolation Returns the value of the session-specific isolation level (O, 1, or 3) of the current Transact-SQL pro-

gram.

@@isolation_lev

el name

Returns the name of the session-specific isolation level of the current Transact-SQL program. One
of: read uncommitted, read committed, repeatable read, serializable read, committed snapshot, or
serializable snapshot

@@jsinstanceid

ID of the instance on which the Job Scheduler is running, or run once enabled.

@@kernel addr

Returns the starting address of the first shared memory region that contains the kernel region.
The result is in the form of Ox<address pointer value>.

460 PUBLIC

Reference Manual: Building Blocks
Global Variables

Global Variable

Definition

@Q@kernel size

Returns the size of the kernel region that is part of the first shared memory region.

@@kernelmode Returns the mode (threaded or process) for which the SAP ASE server is configured.

@@langid Returns the server-wide language ID of the language in use, as specified in
syslanguages.langid.

@@language Returns the name of the language in use, as specified in syslanguages.name.

@@lastkpgendate Returnsthe date and time of when the last key pair was generated as set by
sp_passwordpolicy’s “keypair regeneration period” policy option.

@@lastlogindate Available to each user login session, @@lastlogindate includes a datetime datatype, its

value is the lastlogindate column for the login account before the current session was estab-
lished. This variable is specific to each login session and can be used by that session to determine
the previous login to the account. If the account has not been used previously or

“sp _passwordpolicy 'set',
@@lastlogindateis NULL.

enable last login updates”is O, then the value of

@@lock timeout

Setusing set lock wait n.Returnsthecurrent<lock timeout> setting, in milliseconds.
@@lock timeout returns the value of n. The default value is no timeout. If no set lock

wait nisexecuted atthe beginning of the session, @@lock timeout returns -1.

@@lwpid

Returns the object ID of the next most recently run lightweight procedure.

@@max connectio

ns

Returns the maximum number of simultaneous connections that can be made with the SAP ASE
server in the current computer environment. You can configure the SAP ASE server for any num-
ber of connections less than or equal to the value of @@max_connections with the number

of user connections configuration parameter.

@@max precision

Returns the precision level used by decimal and numeric datatypes set by the server. This

value is a fixed constant of 38.

@@maxcharlen Returns the maximum length, in bytes, of a character in the SAP ASE server's default character
set.

@@maxgroupid Returns the highest group user ID. The highest value is 1048576.

@@maxpagesize Returns the server’s logical page size.

@@maxspid Returns maximum valid value for the spid.

@@maxsuid Returns the highest server user ID. The default value is 2147483647.

@@maxuserid Returns the highest user ID. The highest value is 2147483647.

@@maxvarlen Returns the maximum possible variable length allowed for a user-defined datatype.

Reference Manual: Building Blocks

Global Variables

PUBLIC 461

Global Variable

Definition

@@mempool addr

Returns the global memory pool table address. The result is in the form Ox<address pointer

value>. This variable is for internal use.

@@min poolsize

Returns the minimum size of a named cache pool, in kilobytes. It is calculated based on the DE-
FAULT_POOL_SIZE, which is 256, and the current value of max database page size.

@@mingroupid Returns the lowest group user ID. The lowest value is 16384.
@@minspid Returns 1, which is the lowest value for spid.

@@minsuid Returns the minimum server user ID. The lowest value is -32768.
@@minuserid Returns the lowest user ID. The lowest value is -32768.

@@monitors_acti

Reduces the number of messages shown by sp _sysmon.

ve

@@ncharsize Returns the maximum length, in bytes, of a character set in the current server default character
set.

@@nestlevel Returns the current nesting level.

@@nextkpgendate Returnsthe date and time of when the next key pair scheduled to be generated, as set by
sp_passwordpolicy “keypair regeneration period” policy option.

@@nodeid Returns the current installation's 48-bit node identifier. The SAP ASE server generates a nodeid
the first time the master device is first used, and uniquely identifies an SAP ASE installation.

@@optgoal Returns the current optimization goal setting for query optimization.

@Q@optoptions Returns a bitmap of active options.

@@options Returns a hexadecimal representation of the session's set options.

@@optlevel Returns the currently optimization level setting.

@Qopttimeoutlim Returns the current optimization timeout limit setting for query optimization

it

@@ospid (Threaded mode only) Returns the operating system ID for the server.

@@pack received

Returns the number of input packets read by the SAP ASE server.

@@pack sent

Returns the number of output packets written by the SAP ASE server.

@@packet errors

Returns the number of errors detected by the SAP ASE server while reading and writing packets.

@@pagesize

Returns the server's virtual page size.

462 PUBLIC

Reference Manual: Building Blocks
Global Variables

Global Variable

Definition

@@parallel degr

Returns the current maximum parallel degree setting.

ee

@@plwpid Returns the object ID of the most recently prepared lightweight procedure.
@@probesuid Returns a value of 2 for the probe user ID.

@@procid Returns the stored procedure ID of the currently executing procedure.

@@prev_batch en
crypted

Returns O if the last packet batch of a command was received as plain text; 1 if the last packet
batch of a command was received encrypted.

@@guorum physna

me

Returns the physical path for the quorum device

@@recovery stat

e

Indicates whether the SAP ASE server is in recovery based on these returns:

e NOT_IN_RECOVERY —the SAP ASE server is not in start-up recovery or in failover recovery.
Recovery has been completed and all databases that can be online are brought online.

e RECOVERY_TUNING - the SAP ASE server is in recovery (either startup or failover) and is
tuning the optimal number of recovery tasks.

e BOOTIME_RECOVERY - the SAP ASE server is in startup recovery and has completed tuning
the optimal number of tasks. Not all databases have been recovered.

e FAILOVER_RECOVER - the SAP ASE server is in recovery during an HA failover and has com-
pleted tuning the optimal number of recovery tasks. All databases are not brought online yet.

@@remotestate

Returns the current mode of the primary companion in a high availability environment. For values
returned, see Using Failover in a High Availability Environment.

@Q@repartition d

egree

Returns the current dynamic repartitioning degree setting.

@@resource_gran

ularity

Returns the maximum resource usage hint setting for query optimization.

Reference Manual: Building Blocks

Global Variables

PUBLIC

463

Global Variable

Definition

@@rowcount

Returns the number of rows affected by the last query. The value of @@rowcount is affected by
whether the specified cursor is forward-only or scrollable.

If the cursor is the default, non-scrollable cursor, the value of @@rowcount increments one by
one, in the forward direction only, until the number of rows in the result set are fetched. These rows
are fetched from the underlying tables to the client. The maximum value for @@ rowcount is the

number of rows in the result set.

In the default cursor, @@rowcount is set to O by any command that does not return or affect
rows, such as an if or set command, or an update or delete statement that does not affect

any rows.

If the cursor is scrollable, there is no maximum value for @@rowcount. The value continues to
increment with each fetch, regardless of direction, and there is no maximum value. The
@@rowcount value in scrollable cursors reflects the number of rows fetched from the result set,

not from the underlying tables, to the client.

@@runtime

Returns the time taken to execute the query.

@@scan_parallel

Returns the current maximum parallel degree setting for nonclustered index scans.

_degree
@@servername Returns the name of the SAP ASE server.
@@setrowcount Returns the current value for set rowcount.

@@shmem flags

Returns the shared memory region properties. This variable is for internal use. There are a total of
13 different properties values corresponding to 13 bits in the integer. The valid values represented
from low to high bit are: MR_SHARED, MR_SPECIAL, MR_PRIVATE, MR_READABLE, MR_WRITA-
BLE, MR_EXECUTABLE, MR_HWCOHERENCY, MR_SWCOHERENC, MR_EXACT, MR_BEST,
MR_NAIL, MR_PSUEDO, MR_ZERO.

@@spid

Returns the server process ID of the current process.

@@sglstatus

Returns status information (warning exceptions) resulting from the execution of a fetch state-

ment.

@@ssl ciphersui

te

Returns NULL if SSL is not used on the current connection; otherwise, it returns the name of the
cipher suite you chose during the SSL handshake on the current connection.

@@ssl protocol

Returns the protocol negotiated during a session.

@@stringsize

Returns the amount of character data returned froma toString () method. The default is 50.
Max values may be up to 2GB. A value of zero specifies the default value. See the Component Inte-
gration Services User’s Guide for more information.

@@sys_tempdbid

Returns the database ID of the executing instance’s effective local system temporary database.

464 PUBLIC

Reference Manual: Building Blocks
Global Variables

Global Variable

Definition

@@system busy

Number of ticks during which the SAP ASE server was running a system task.

The value of GRuser busy + @@system busy should equal the value of @ecpu_busy.

@@system view

Returns the session-specific system view setting, either “instance” or “cluster.”

@@tempdbid Returns a valid temporary database ID (dbid) of the session’s assigned temporary database.

@Q@textcolid Returns the column ID of the column referenced by @@textptr.

@Q@textdataptnid Returns the partition ID of a text partition containing the column referenced by @@textptr.

@@textdbid Returns the database ID of a database containing an object with the column referenced by
@@textptr.

@@textobjid Returns the object ID of an object containing the column referenced by @@textptr.

@@textptnid Returns the partition ID of a data partition containing the column referenced by @@textptr.

@@textptr Returns the text pointer of the last text, unitext, or image column inserted or updated by a

process (Not the same as the textptr function).

@@textptr param

Returns O if the current status of the textptr parameters configuration parameter is off. Re-

eters turns 1if the current status of the textptr parameters if on. See the Component Integration
Services User’s Guide for more information.

@@textsize Returns the limit on the number of bytes of text, unitext, or image dataa select returns.
Default limit is 32K bytes for 1 sgl; the default depends on the client software. Can be changed for
asession with set textsize.

@@textts Returns the text timestamp of the column referenced by @@textptr.

@@thresh hyster

esis

Returns the decrease in free space required to activate a threshold. This amount, also known as
the hysteresis value, is measured in 2K database pages. It determines how closely thresholds can
be placed on a database segment.

@@timeticks

Returns the number of microseconds per tick. The amount of time per tick is machine-dependent.

@@total errors

Returns the number of errors detected by the SAP ASE server while reading and writing.

@@total read

Returns the number of disk reads by the SAP ASE server.

@@total write

Returns the number of disk writes by the SAP ASE server.

@@tranchained Returns O if the current transaction mode of the Transact-SQL program is unchained. Returns 1 if
the current transaction mode of the Transact-SQL program is chained.
@@trancount Returns the nesting level of transactions in the current user session.

Reference Manual: Building Blocks

Global Variables

PUBLIC 465

Global Variable Definition

@Q@tranrollback Returnsthe type of rollback encountered, if any. If the return value is:

e < (0 -aserverinduced implicit rollback of a multistatement transaction. @etranrollback
stores the negation of the error number that resulted in the implicit transaction rollback.
e (O - this session of the currently active transaction encountered no implicit rollbacks.

e > (<10 - the most-recent occurrence of a transaction rollback was a user-issued rollback
from one of these SQL commands:

o rollback traninaSQL batch, procedure or trigger
o rollback trigger outside atrigger's scope.
The return value for @@t ranstate describes which rollback command the user issued:
o 1-userissued an explicit rollback trancommand
o 2-userissuedarollback tran to<savepoint>.The transactionis still active.
e >100 - The most recent occurrence of a transaction rollback was invoked on a single-state-
ment transaction. @@t ranstate stores the error number that caused the statement to roll-
back.

SAP ASE does not change a negative value for @@t ranrollback until the next rol1lback
tranorcommit tranisissued, indicating that the session has encountered an implicit trans-
action rollback. SAP ASE resets the value for @@t ranrollback to O once it successfully applies
thenext rollback tranorcommit tran.Thevaluefor@@tranrollbackisO attheend

of this example:

set chained on

go
<... Execute a DML statement ...>
if (@@error != 0) and (Q@tranrollback < 0)
begin
rollback tran
end
go

@@transactional ReturnsOif RPCstoremote servers are transactional. Returns 1if RPCs to remote servers are not
_rpc transactional. See enable xact coordinationandset option
transactional rpcinthe Reference Manual. Also, see the Component Integration Services

User’s Guide.

@@transtate Returns the current state of a transaction after a statement executes in the current user session.

@R@trigger name Returns the name of the trigger currently executing.

@@unicharsize Returns 2, the size of a characterinunichar.

@Q@user busy Number of ticks during which the SAP ASE server was running a user task

The value of @Guser busy + C@system busy should equal the value of @ecpu_busy

@@version Returns the date, version string, and so on of the current release of the SAP ASE server.

Reference Manual: Building Blocks
466 PUBLIC Global Variables

Global Variable Definition

@@version _as_in Returnsthe number of the last upgrade version of the current release of the SAP ASE server as an
teger integer. For example, @@version as_integer returns 12500 if you are running SAP ASE ver-
sion12.5,12.5.0.3,0r 12.5.1.

@@version numbe Returnsthe entire version of the current release of the SAP ASE server as an integer.

r

Related Information

get_appcontext [page 183]
set_appcontext [page 335]
textptr [page 414]

5.1 Using Global Variables in a Clustered Environment

For @e@servername, the Cluster Edition returns the name of the cluster, not the instance name. Use
@@instancename to return the name of the instance.

In a non-clustered SAP ASE environment, the value for @@identity changes for every record inserted. If the
most recent record inserted contains a column with the IDENTITY property, @eidentity is set to the value of
this column, otherwise it is set to “0"” (an invalid value). This variable is session-specific, and takes its value
based on the last insert that occurred during this session.

In a clustered environment, multiple nodes perform inserts on tables, so the session-specific behavior is not
retained for @@identity. Inaclustered environment, the value for @eidentity depends on the last record
inserted in the node for the current session and not on the last record inserted in the cluster.

Reference Manual: Building Blocks
Global Variables PUBLIC 467

6 Expressions, Identifiers, and Wildcard
Characters

This section describes Transact-SQL expressions, valid identifiers, and wildcard characters.

6.1 Expressions

An expression is a combination of one or more constants, literals, functions, column identifiers and/or
variables, separated by operators, that returns a single value.

Expressions can be of several types, including arithmetic, relational, logical (or Boolean), and character string.
In some Transact-SQL clauses, a subquery can be used in an expression. A case expression can be used in an
expression.

The types of expressions that are used in SAP ASE syntax statements are:

Usage Definition

expression Can include constants, literals, functions, column identifiers, variables, or
parameters

logical expression An expression that returns TRUE, FALSE, or UNKNOWN

constant expression An expression that always returns the same value, such as “5+3” or “ABCDE”

<float_expr> Any floating-point expression or an expression that implicitly converts to a floating

value

<integer_ expr> Any integer expression or an expression that implicitly converts to an integer value

<numeric_expr> Any numeric expression that returns a single value

<char_expr> Any expression that returns a single character-type value

<binary_expression> aneynression that returns a single binary or varbinary value

6.1.1 Size of Expressions

Expressions returning binary or character data can be up to 16384 bytes in length.

If you upgraded from an earlier release of SAP ASE that only allowed expressions up to 255 bytes in length, and
your stored procedures or scripts stored a result string of up to 255 bytes, the remainder was truncated. You
may have to rewrite these stored procedures and scripts to account for the additional length of the
expressions.

Reference Manual: Building Blocks
468 PUBLIC Expressions, Identifiers, and Wildcard Characters

6.1.2 Arithmetic and Character Expressions

The general pattern for arithmetic and character expressions is:

{<constant >[< column name >|< function >[< >(<subquery>)
| (<case expression>) }
[{<arithmetic operator> |< bitwise operator >|
<string operator> |< comparison operator >}
{<constant >| <column name >|< function >| (<subquery>)
| <case expression>}]<...>

6.1.3 Relational and Logical Expressions

A logical expression or relational expression returns TRUE, FALSE, or UNKNOWN.

The general patterns are:

expression <comparison operator> [any | all] <expression>

expression [not] in <expression>

[not]exists <expression>

expression [not] between expression and <expression>

expression [not] like "<match string>" [escape "<escape character> "]
not expression like "<match string>" [escape "<escape character> "]
<expression> is [not] null

not <logical expression>

logical expression {and | or} <logical expression>

6.1.4 Operator Precedence

Operators have the following precedence levels, where 1 is the highest level and 6 is the lowest.

unary (single argument) - + ~

* /%

binary (two argument) + - & |
not

and

o0 s W e

or

Reference Manual: Building Blocks
Expressions, Identifiers, and Wildcard Characters PUBLIC

469

When all operators in an expression are at the same level, the order of execution is left to right. You can change
the order of execution with parentheses—the most deeply nested expression is processed first.

6.1.5 Arithmetic Operators

The SAP ASE server uses the following arithmetic operators:

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

oe

Modulo (Transact-SQL extension)

Addition, subtraction, division, and multiplication can be used on exact numeric, approximate numeric, and
money type columns.

The modulo operator cannot be used on smallmoney or money columns. Modulo finds the integer remainder
after a division involving two whole numbers. For example, 21 % 11 = 10 because 21 divided by 11 equals 1 with a
remainder of 10.

In TSQL, the results of modulo has the same sign as the dividend. For example:

1> select -11 % 3, 11 $ -3, -11 % -3
2> go

=2 2 =2
(1 row affected)

When you perform arithmetic operations on mixed datatypes, for example f1oat and int, the SAP ASE server
follows specific rules for determining the type of the result.

Related Information

System and User-Defined Datatypes [page 13]

Reference Manual: Building Blocks
470 PUBLIC Expressions, Identifiers, and Wildcard Characters

6.1.6 Bitwise Operators

The bitwise operators are a Transact-SQL extension for use with integer type data. These operators convert
each integer operand into its binary representation, then evaluate the operands column by column. A value of 1
corresponds to true; a value of O corresponds to false.

This table summarizes the results for operands of O and 1. If either operand is NULL, the bitwise operator
returns NULL:

Table 17: Truth Tables for Bitwise Operations

& (and) 1 0
1 1 0
0 0 0
| (or) 1 0
1 1 1
0 1 0
~ (exclusive or) 1 0
1 0 1
0 1 0
~ (not)

1 FALSE

0 0

The examples in this table use two tinyint arguments, A =170 (10101010 in binary form) and B =75
(01001011 in binary form):

Table 18: Examples of Bitwise Operations

Operation Binary Form Result Explanation
(A&B) 10101010 10 Result column equals 1 if both A and B are 1. Otherwise, result
| Is 0.
01001011 column equals O

00001010

Reference Manual: Building Blocks
Expressions, Identifiers, and Wildcard Characters PUBLIC 471

Operation Binary Form Result Explanation

(A|B) 10101010 235 Result column equals 1 if either A or B, or both, is 1. Other-
01001011 wise, result column equals O
11101011

(A"B) 10101010 225 Result column equals 1 if either A or B, but not both, is 1
01001011
11100001

(~A) 10101010 85 All 1s are changed to Os and all Os to 1s
01010101

6.1.7 String Concatenation Operator

You can use both the + and | | (double-pipe) string operators to concatenate two or more character or binary
expressions.

For example, the following displays author names under the column heading Name in last-name first-name
order, with a comma after the last name; for example, “Bennett, Abraham.”:

select Name = (au lname + ", " + au fname)
from authors

This example results in "abcdef™, "abcdef":

select "abc" + "def", "abc" || "def"

The following returns the string “abc def”. The empty string is interpreted as a single space in all char,
varchar, unichar, nchar, nvarchar, and text concatenation, and in varchar andunivarchar insert
and assignment statements:

select "abc" + "" + "def"
When concatenating non-character, non-binary expressions, always use convert:

select "The date is " +
convert (varchar (12), getdate())

A string concatenated with NULL evaluates to the value of the string. This is an exception to the SQL standard,
which states that a string concatenated with a NULL should evaluate to NULL.

Reference Manual: Building Blocks
472 PUBLIC Expressions, Identifiers, and Wildcard Characters

6.1.8 Comparison Operators

The SAP ASE server uses these comparison operators:

Operator Meaning

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

1= (Transact-SQL extension) Not equal to

> (Transact-SQL extension) Not greater than
1< (Transact-SQL extension) Not less than

In comparing character data, < means closer to the beginning of the server’s sort order and > means closer to
the end of the sort order. Uppercase and lowercase letters are equal in a case-insensitive sort order. Use
sp_helpsort to see the sort order for your SAP ASE server. Trailing blanks are ignored for comparison

purposes. So, for example, “Dirk” is the same as “Dirk ",

In comparing dates, < means earlier and > means later.

Put single or double quotes around all character and datetime data used with a comparison operator:

= "Bennet"
> "May 22 1947"

6.1.9 Nonstandard Operators

These operators are Transact-SQL extensions.

® Modulo operator: %
® Negative comparison ope
® Bitwise operators: ~, *, |,

® Join operators: *=and =*

Reference Manual: Building Blocks

rators: 1>, 1<, I=

&

Expressions, Identifiers, and Wildcard Characters

PUBLIC

473

6.1.10 Using any, all, and in

Use any, all, and in in your queries to return different results.

any is used with <, >, or = and a subquery. It returns results when any value retrieved in the subquery matches
the value in the where or having clause of the outer statement. For more information, see the Transact-SQL
User's Guide.

allis used with < or > and a subquery. It returns results when all values retrieved in the subquery are less than
(<) or greater than (>) the value in the where or having clause of the outer statement. For more information,
see the Transact-SQL User’s Guide.

in returns results when any value returned by the second expression matches the value in the first expression.
The second expression must be a subquery or a list of values enclosed in parentheses. in is equivalent to
= any. For more information, see the reference page for the where clause in Reference Manual: Commands.

6.1.11 Negating and Testing

not negates the meaning of a keyword or logical expression.

Use exists, followed by a subquery, to test for the existence of a particular result.

6.1.12 Ranges

between is the range-start keyword; and is the range-end keyword.

The following range is inclusive:
where columnl between x and y

The following range is not inclusive:

where columnl > x and columnl < y

6.1.13 Using Nulls in Expressions

Useis nulloris not null inqueries on columns defined to allow null values.

An expression with a bitwise or arithmetic operator evaluates to NULL if any of the operands are null. For
example, the following evaluates to NULL if <column1>is NULL:

1 + columnl

Reference Manual: Building Blocks
474 PUBLIC Expressions, Identifiers, and Wildcard Characters

6.1.13.1 Comparisons That Return TRUE

In general, the result of comparing null values is UNKNOWN, since it is not possible to determine whether NULL
is equal (or not equal) to a given value or to another NULL.

However, the following cases return TRUE when <expression> is any column, variable or literal, or
combination of these, which evaluates as NULL:

® <Jexpression>is null

® <Jexpression>=null

® <expression>=@<x,>where @<x> is a variable or parameter containing NULL. This exception
facilitates writing stored procedures with null default parameters.

® <expression>!=<n,>where <n>is a literal that does not contain NULL, and <expression> evaluates
to NULL.

The negative versions of these expressions return TRUE when the expression does not evaluate to NULL:

® <Jexpression>is not null
® <expression>!=null

® <J<expression>!= @<x>

i Note

The far right side of these exceptions is a literal null, or a variable or parameter containing NULL. If the far
right side of the comparison is an expression (such as @<nullvar> + 1), the entire expression evaluates to
NULL.

Following these rules, null column values do not join with other null column values. Comparing null column
values to other null column values in a where clause always returns UNKNOWN for null values, regardless of
the comparison operator, and the rows are not included in the results. For example, this query returns no result
rows where columnl contains NULL in both tables (although it may return other rows):

select columnl
from tablel, table2
where tablel.columnl = table2.columnl

6.1.13.2 Difference Between FALSE and UNKNOWN

Although neither FALSE nor UNKNOWN returns values, there is an important logical difference between FALSE
and UNKNOWN, because the opposite of false (“not false”) is true. For example, “1 = 2" evaluates to false and
its opposite, “1!=2" evaluates to true. But “not unknown" is still unknown. If null values are included in a
comparison, you cannot negate the expression to get the opposite set of rows or the opposite truth value.

6.1.13.3 Using “NULL” as a Character String

Only columns for which NULL was specified in the create table statement and into which you have explicitly
entered NULL (no quotes), or into which no data has been entered, contain null values. Avoid entering the

Reference Manual: Building Blocks
Expressions, Identifiers, and Wildcard Characters PUBLIC 475

character string “NULL" (with quotes) as data for a character column. It can only lead to confusion. Use “N/A",
“none”, or a similar value instead. When you want to enter the value NULL explicitly, do not use single or double
quotes.

6.1.13.4 NULL Compared to the Empty String

The empty string (* "or ') is always stored as a single space in variables and column data.

This concatenation statement is equivalent to “abc def”, not to “abcdef":

"abe" + "" 4 "def"

The empty string is never evaluated as NULL.

6.1.14 Connecting Expressions

and connects two expressions and returns results when both are true. or connects two or more conditions
and returns results when either of the conditions is true.

When more than one logical operator is used in a statement, and is evaluated before or. You can change the
order of execution with parentheses.

This table shows the results of logical operations, including those that involve null values.

Table 19: Truth Tables for Logical Expressions

and TRUE FALSE NULL
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
NULL UNKNOWN FALSE UNKNOWN
or TRUE FALSE NULL
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
NULL TRUE UNKNOWN UNKNOWN
not

TRUE FALSE

FALSE TRUE

Reference Manual: Building Blocks
476 PUBLIC Expressions, Identifiers, and Wildcard Characters

NULL UNKNOWN

The result UNKNOWN indicates that one or more of the expressions evaluates to NULL, and that the result of
the operation cannot be determined to be either TRUE or FALSE.

Related Information

Using Nulls in Expressions [page 474]

6.1.15 Using Parentheses in Expressions

Parentheses can be used to group the elements in an expression. When “expression” is given as a variable in a
syntax statement, a simple expression is assumed. “Logical expression” is specified when only a logical
expression is acceptable.

6.1.16 Comparing Character Expressions

Character constant expressions are treated as varchar. If they are compared with non-varchar variables or
column data, the datatype precedence rules are used in the comparison (that is, the datatype with lower
precedence is converted to the datatype with higher precedence). If implicit datatype conversion is not
supported, you must use the convert function.

Comparison of a char expression to a varchar expression follows the datatype precedence rule; the “lower”
datatype is converted to the “higher” datatype. All varchar expressions are converted to char (that is, trailing
blanks are appended) for the comparison. If a unichar expression is compared to a char (varchar, nchar,
nvarchar) expression, the latter is implicitly converted to unichar.

6.1.17 Using the Empty String

The empty string (") or (' ') is interpreted as a single blank in insert or assignment statements on varchar

orunivarchar data.

In concatenation of varchar, char, nchar, nvarchar data, the empty string is interpreted as a single space;
for following example is stored as “abc def":

"abe" + """ 4 v"def"

The empty string is never evaluated as NULL.

Reference Manual: Building Blocks
Expressions, Identifiers, and Wildcard Characters PUBLIC 477

6.1.18 Including Quotation Marks in Character Expressions

There are two ways to specify literal quotes within a char, or varchar entry.

The first method is to double the quotes. For example, if you begin a character entry with a single quote and
you want to include a single quote as part of the entry, use two single quotes:

'T don''t understand.'

With double quotes:

"He said, ""It's not really confusing."""

The second method is to enclose a quote in the opposite kind of quote mark. In other words, surround an entry
containing a double quote with single quotes (or vice versa). Here are some examples:

'George said, "There must be a better way."'
"Isn't there a better way?"
'George asked, "Isn"t there a better way?"'

6.1.19 Using the Continuation Character

To continue a character string to the next line on your screen, enter a backslash (\) before going to the next
line.

6.2 Identifiers

Identifiers are names for database objects such as databases, tables, views, columns, indexes, triggers,
procedures, defaults, rules, and cursors.

The limit for the length of object names or identifiers is 255 bytes for regular identifiers, and 253 bytes for
delimited identifiers. The limit applies to most user-defined identifiers including table name, column name,
index name and so on. Due to the expanded limits, some system tables (catalogs) and built-in functions have
been expanded.

For variables, “@" count as 1 byte, and the allowed name for it is 254 bytes long.
Listed below are the identifiers, system tables, and built-in functions that are affected these limits.

The maximum length for these identifiers is now 255 bytes.

e Table name

e Columnname

® |ndex name

e \iewname

e User-defined datatype
e Trigger name

Reference Manual: Building Blocks
478 PUBLIC Expressions, Identifiers, and Wildcard Characters

Default name

Rule name

Constraint name

Procedure name

Variable name

JAR name

Name of LWP or dynamic statement
Function name

Name of the time range

Application context name

Most user-defined SAP ASE identifiers can be a maximum of 255 bytes in length, whether single-byte or
multibyte characters are used. Others can be a maximum of 30 bytes. Refer to the Transact-SQL User’s Guide
for alist of both 255-byte and 30-byte identifiers.

The first character of an identifier must be either an alphabetic character, as defined in the current character
set, or the underscore (_) character.

i Note

Temporary table names, which begin with the pound sign (#), and variable names, which begin with the at
sign (@), are exceptions to this rule.

Subsequent characters can include letters, numbers, the symbols #, @, _, and currency symbols such as
$ (dollars), ¥ (yen), and £ (pound sterling). Identifiers cannot include special characters such as !, %, *, &, ¥,
and . or embedded spaces.

You cannot use a reserved word, such as a Transact-SQL command, as an identifier.

You cannot use the dash symbol (=) as an identifier.

Related Information

Reserved Words [page 495]

6.2.1 Short Identifiers

The maximum length for these identifiers is 30 bytes:

Cursor name

Server name

Host name

Login name

Password

Host process identification
Application name

Reference Manual: Building Blocks
Expressions, Identifiers, and Wildcard Characters PUBLIC 479

e [nitial language name
e Character set name
e User name

e Group name

e Database name

® |ogical device name
e Segment name

® Session name

® [Execution class name
® [Engine name

® Quiesce tag name

e Cache name

6.2.2 Tables Beginning With # (Temporary Tables)

Tables with names that begin with the pound sign (#) are temporary tables. You cannot create other types of
objects with names that begin with the pound sign.

The SAP ASE server performs special operations on temporary table names to maintain unique naming on a
per-session basis. When you create a temporary table with a name of fewer than 238 bytes, the sysobjects
name in the tempdb adds 17 bytes to make the table name unique. If the table name is more than 238 bytes,
the temporary table name in sysobjects uses only the first 238 bytes, then adds 17 bytes to make it unique.

In versions of SAP ASE earlier than 15.0, temporary table names in sysobjects were 30 bytes. If you used a
table name with fewer than 13 bytes, the name was padded with underscores (_) to 13 bytes, then another 17
bytes of other characters to bring the name up to 30 bytes.

6.2.3 Case Sensitivity and Identifiers

Sensitivity to the case (upper or lower) of identifiers and data depends on the sort order installed on your SAP
ASE server.

Case sensitivity can be changed for single-byte character sets by reconfiguring SAP ASE's sort order; see the
System Administration Guide for more information. Case is significant in utility program options.

If the SAP ASE server is installed with a case-insensitive sort order, you cannot create a table named MYTABLE
if a table named MyTable or mytable already exists. Similarly, the following command returns rows from
MYTABLE, MyTable, or mytable, or any combination of uppercase and lowercase letters in the name:

select * from MYTABLE

Reference Manual: Building Blocks
480 PUBLIC Expressions, Identifiers, and Wildcard Characters

6.2.4 Uniqueness of Object Names

Object names need not be unique in a database. However, column names and index names must be unique
within a table, and other object names must be unique for each owner within a database. Database names must
be unique on the SAP ASE server.

6.2.5 Using Delimited Identifiers

Delimited identifiers are object names enclosed in double quotes. Using delimited identifiers allows you to
avoid certain restrictions on object names. In earlier versions of SAP ASE, only table, view, and column names
could be delimited by quotes; other object names could not. This changed beginning with SAP ASE version 15.7,
although enabling the ability requires setting a configuration parameter.

Delimited identifiers can be reserved words, can begin with non-alphabetic characters, and can include
characters that would not otherwise be allowed. They cannot exceed 253 bytes.

A\ Caution

Delimited identifiers may not be recognized by all front-end applications and should not be used as
parameters to system procedures.

Before creating or referencing a delimited identifier, you must execute:
set quoted identifier on
Each time you use the delimited identifier in a statement, you must enclose it in double quotes. For example:

create table "lone" (coll char(3))
create table "include spaces" (coll int)

create table "grant" ("add" int)
insert "grant" ("add") values (3)

While the quoted_identifier optionisturned on, do not use double quotes around character or date
strings; use single quotes instead. Delimiting these strings with double quotes causes the SAP ASE server to
treat them as identifiers. For example, to insert a character string into <col1> of <ltable>, use:

insert "lone" (coll) values ('abc')
Do not use:
insert "lone" (coll) values ("abc")

To insert a single quote into a column, use two consecutive single quotation marks. For example, to insert the
characters “a’'b” into <col1> use:

insert "lone" (coll) values('a''b')

Reference Manual: Building Blocks
Expressions, Identifiers, and Wildcard Characters PUBLIC 481

Syntax That Includes Quotes

When the quoted identifier optionis setto on, you do not need to use double quotes around an identifier
if the syntax of the statement requires that a quoted string contain an identifier. For example:

set quoted identifier on
create table 'lone' (cl int)

However, object id() requires a string, so you must include the table name in quotes to select the
information:

select object id('lone')

896003192

You can include an embedded double quote in a quoted identifier by doubling the quote:

create table "embedded""quote" (cl int)

However, there is no need to double the quote when the statement syntax requires the object name to be
expressed as a string:

select object id('embedded"quote')

6.2.5.1 Enabling Quoted Identifiers

The quoted identifier enhancement configuration parameter allows the SAP ASE server to use quoted
identifiers for:

e Tables

o \iews

e Column names

® |ndex names (SAP ASE version 15.7 and later)

e System procedure parameters (SAP ASE version 15.7 and later)

quoted identifier enhancement is part of the enable functionality group, and its default settings
depends on the settings for enable functionality group configuration parameter. See the System
Administration Guide, Volume 1.

To enable quoted identifiers:

1. Settheenable functionality groupoOr quoted identifier enhancement configuration
parameter to 1. For example:

sp_configure "enable functionality group", 1

2. Restart the SAP ASE server so the change takes effect.
3. Turnonquoted identifier for the current session:

set quoted identifier on

Reference Manual: Building Blocks
482 PUBLIC Expressions, Identifiers, and Wildcard Characters

Once you enable quoted identifier enhancement, the query processor removes delimiters and trailing
spaces from object definitions when you include quoted identifiers. For example, the SAP ASE server considers
"ident", [ident], and ident to beidentical. If quoted identifier enhancement is notenabled,
"ident" is considered distinct from the other two.

When you start the SAP ASE server with quoted identifier enhancement enabled:

e Objects you create with quoted identifiers before restarting the SAP ASE server with the enable
functionality group configuration parameter enabled are not automatically accessible when you use
quoted identifiers after starting the server with this parameter enabled, and vice versa. That is, the SAP
ASE server does not automatically rename all database objects.

However, you can use sp_rename to manually rename objects. For example, if you create an object named
"ident" and then restart the SAP ASE server with enable functionality group enabled, rename the
object by issuing:

sp_rename '"ident"', 'ident'

e The SAP ASE server treats [tab.dba.ident] and "tab.dba.ident" as fully qualified names.

e Any Transact-SQL statements, functions, and system or stored procedures that accept identifiers for
objects also work with delimited identifiers.

® Thevalid name function distinguishes strings that are valid for identifiers under regular rules from those
that are valid under the rules for delimited identifiers, with a nonzero return indicating a valid name.
For example, valid name ('ident/v1'") returnstrue (zero) since 'ident/v1"' isvalid only as a
delimited identifier. However, valid name ('ident') returns anonzero value because 'ident' is valid
as a delimited identifier or as a normal identifier.

e |dentifiers are limited to 253 characters (28 bytes) (without quoted identifier enhancement enabled
these are 255 characters (30 bytes) long). Valid lengths for delimited identifiers include the delimiters and
any embedded or trailing spaces.

i Note

We recommend that you avoid conventional identifiers that cannot be represented as delimited
identifiers zones (254-255 or 29-30 bytes in length). The SAP ASE server and its subsystems
occasionally construct internal SQL statements with delimiters added to identifiers.

e Do not use dots and delimiters as part of identifiers because of how the SAP ASE server interprets double
quotes in varchar strings referring to identifiers.

e |dentifiers have these additional constraints if they relate to items outside the SAP ASE server:

o ldentifiers must begin with an alphabetic character followed by alphanumeric characters or several
special characters ($, #, @, _, ¥, £). Additionally:

o SQL variables can include @ as the first character.
o Temporary objects (objects in tempdb) can include # as the first character.
o You cannot use reserved words as identifiers.

o Delimited identifiers need not conform to the rules for conventional identifiers, but must be delimited
with matching square brackets or with double quotes.

© You cannot use delimited identifiers for variables or labels.

o Youmustenable set quoted identifier touse quoted identifiers. Once you enable set
quoted identifier, you mustenclose varchar string literals in single, not double, quotes.

o varchar string literals that contain identifiers cannot include delimiter characters.

o Delimited identifiers cannot begin with the pound-sign (#). They should also not:

Reference Manual: Building Blocks
Expressions, Identifiers, and Wildcard Characters PUBLIC 483

© Begin with (@)
o Include spaces
o Contain the dot character (.), or the delimiter characters: “, [, or]
o Trailing spaces are stripped from delimited identifiers, and zero-length identifiers are not allowed.

Related Information

Reserved Words [page 495]

6.2.5.2 Using Quoted Identifiers on Temporary Tables

SAP ASE allows you to use quoted identifiers on temporary tables.

Quoted identifiers allow you to use nonalphanumeric characters as table name, view names, column names,
and so on. Specify quoted identifiers by adding double quotes or square brackets around the identifiers.

To enable SAP ASE to use quoted identifiers on temporary tables:

Enable the quoted identifier enhancements configuration parameter:
sp_configure 'quoted identifier enhancements', 1

You must restart SAP ASE to enable this parameter.
Enable quoted identifiers for the session:

set quoted identifier on

This example creates a temporary table named #temp table:

create table "#temp table" ("c" int)

This example inserts data into #temp_table:

insert "#temp table" wvalues (1)

#temp table contains:

select * from "#temp table"

(1 row affected)

When naming a temporary table, consider:

484

SAP ASE treats any table whose first character is not ‘#' as an ordinary table and not a temporary table.
SAP ASE treats a table named " #table” (which includes a space before the # sign) as a regular table
because the first character is not "#", but a space.

SAP ASE considers tables with special characters in the table name after the "#" as having valid temporary
table names (for example"#$$temp_table").

Reference Manual: Building Blocks
PUBLIC Expressions, Identifiers, and Wildcard Characters

A number of command support using quoted identifiers on temporary tables, including:

® create
® create
® insert
® insert
® select
® select
® create

® create

table #temp (c int)

table “templ” (c int)
#templ values (1)

“templ” values (1)

* into “#temp2” from table2

* from “ftemp”, “ftemp2” where “ftemp”.c <> “ftemp2”.c
table “#Q@#S$%"%&temp” (c int)

procedure create tmp as create table “#templ”

6.2.6 Identifying Tables or Columns by Their Qualified Object

Name

You can uniquely identify a table or column by adding other names that qualify it—the database name, owner's
name, and (for a column) the table or view name.

Each qualifier is separated from the next one by a period. For example:

<database.owner.table name.column_ name>

<database.owner.view name.column name>

The naming conventions are:

[[<database>.]<owner>.]<table name>

[[<database>.]<owner>.]<view name>

6.2.6.1

If youuse set quoted identifier on,you can use double quotes around individual parts of a qualified
object name.

Use a separate pair of quotes for each qualifier that requires quotes. For example, use:

<database>.<owner>."<table name>"."<column name>"

Do not use:

<database>.<owner>."<table name>.<column name>"

Using Delimited Identifiers Within an Object Name

Reference Manual: Building Blocks
Expressions, Identifiers, and Wildcard Characters

PUBLIC

485

6.2.6.2 Omitting the Owner Name

You can omit the intermediate elements in a name and use dots to indicate their positions, as long as the
system is given enough information to identify the object:

For example:

<database..table name>

<database..view name>

6.2.6.3 Referencing Your Own Objects in the Current
Database

You need not use the database name or owner name to reference your own objects in the current database.
The default value for <owner> is the current user, and the default value for <database> is the current
database.

If you reference an object without qualifying it with the database name and owner name, the SAP ASE server
tries to find the object in the current database among the objects you own.

6.2.6.4 Referencing Objects Owned by the Database Owner

If you omit the owner name and you do not own an object by that name, the SAP ASE server looks for objects of
that name owned by the Database Owner.

You must qualify objects owned by the Database Owner only if you own an object of the same name, but you
want to use the object owned by the Database Owner. However, you must qualify objects owned by other users
with the user's name, whether or not you own objects of the same name.

6.2.6.5 Using Qualified Identifiers Consistently

When qualifying a column name and table name in the same statement, be sure to use the same qualifying
expressions for each; they are evaluated as strings and must match; otherwise, an error is returned.

Example: Example 1

select demo.mary.publishers.city from demo.mary.publishers

QLEYy =———ceooooooooosssoomms Boston Washington Berkeley

Reference Manual: Building Blocks
486 PUBLIC Expressions, Identifiers, and Wildcard Characters

Example: Example 2

This example is incorrect because the syntax style for the column name does not match the syntax style used
for the table name.

select demo.mary.publishers.city from demo..publishers

The column prefix "demo.mary.publishers" does not match a table name or alias
name used in the query.

6.2.7 Determining Whether an Identifier is Valid

Use the system function valid name, after changing character sets or before creating a table or view, to
determine whether the object name is acceptable to the SAP ASE server.

The syntaxis:

select valid name ("<object name>")

If <object name>is not a valid identifier (for example, if it contains illegal characters or is more than 30 bytes
long), the SAP ASE server returns O. If <object name> is a valid identifier, the SAP ASE server returns a
nonzero number.

6.2.8 Renaming Database Objects

Rename user objects (including user-defined datatypes) with sp_rename.

A Caution

After you rename a table or column, you must redefine all procedures, triggers, and views that depend on
the renamed object.

6.2.9 Using Multibyte Character Sets

In multibyte character sets, a wider range of characters is available for use in identifiers. For example, on a
server with the Japanese language installed, the following types of characters may be used as the first
character of an identifier: Zenkaku or Hankaku Katakana, Hiragana, Kanji, Romaji, Greek, Cyrillic, or ASCII.

Although Hankaku Katakana characters are legal in identifiers on Japanese systems, they are not
recommended for use in heterogeneous systems. These characters cannot be converted between the EUC-JIS
and Shift-JIS character sets.

The same is true for some 8-bit European characters. For example, the OE ligature, is part of the Macintosh
character set (codepoint OxCE). This character does not exist in the ISO 8859-1 (iso_1) character set. If the OE

Reference Manual: Building Blocks
Expressions, Identifiers, and Wildcard Characters PUBLIC 487

ligature exists in data being converted from the Macintosh to the ISO 8859-1 character set, it causes a
conversion error.

If an object identifier contains a character that cannot be converted, the client loses direct access to that
object.

6.3 like Pattern Matching

The SAP ASE server allows you to treat square brackets individually in 1ike pattern-matching algorithms.

For example, if you create this table:

create table tl (coll char(10))
insert tl values ("x[x")

insert tl values ("x]x")

insert tl values ("x{x")

insert tl values ("x}x")

insert tl values (" [xx]")

insert tl values ("xx")

Use the wild card character, "%", with the 1ike parameter to find matches for the brackets. For example, this
finds the rows with curly brackets:

select * from tl where coll like "${%"
coll

Matching square brackets (that is, the "[]" characters) in a 1ike clause requires special consideration. There
are query constructs using brackets that result in erroneous result sets. For example, in this query the user is
looking for a result set that only includes the rows with xx:

select * from tl where coll not like "S[(){}[]11%"
coll

x]x
x{x
X} x
[xx]
XX

However, the result set includes all rows because the [...] construct finishes with the first 1 encountered
after the [. Consequently, this 1ike pattern has four elements instead of the expected three: the % wild card
character, followed by the character grouping [() { } [1 which matches () {} [characters, then a singular]
and finally another % wild card. This construct results in all rows in table t1 being displayed.

Likewise, an escape clause does not affect characters in a[] set because the query processor considers them
already "escaped" and having no special meaning. However, the] character must retain its special meaning for
the [] pattern to work. Again, this query returns all rows from the t1 table instead of only those without
brackets:

select * from tl where coll not like "$[(){}[\]1]%" escape "\"
coll

Reference Manual: Building Blocks
488 PUBLIC Expressions, Identifiers, and Wildcard Characters

X [x
x]x
X {x
X} x
[xx]
XX

Writing queries that exclude rows that have brackets from the result set requires that you use two separate
like clauses. For example, this selects all rows from t1 that do not include brackets:

select * from tl where coll not like "$[(){}[]1%" and coll not like "%]%"
coll

6.4 Pattern Matching with Wildcard Characters

Wildcard characters represent one or more characters, or a range of characters, ina <match_string>.

A <match string>is acharacter string containing the pattern to find in the expression. It can be any
combination of constants, variables, and column names or a concatenated expression, such as:

like @variable + "%".

If the match string is a constant, it must always be enclosed in single or double quotes.

Use wildcard characters with the keyword 1ike to find character and date strings that match a particular
pattern. You cannot use 1ike to search for seconds or milliseconds.

Use wildcard characters in where and having clauses to find character or date/time information that is 1ike
—or not 1like—the match string:

{where | having} [not]
<expression> [not] like <match string>
[escape "<escape character> "]

<expression> can be any combination of column names, constants, or functions with a character value.

Wildcard characters used without 11 ke have no special meaning. For example, this query finds any phone
numbers that start with the four characters “415%":

select phone
from authors
where phone = "415%"

Related Information

Using Wildcard Characters With datetime Data [page 494]

Reference Manual: Building Blocks
Expressions, Identifiers, and Wildcard Characters PUBLIC 489

6.4.1 Case and Accent Insensitivity

If your SAP ASE server uses a case-insensitive sort order, case is ignored when comparing <expression> and

<match string>.

For example, this clause would return “Smith,” “smith,” and “SMITH" on a case-insensitive SAP ASE server:

where col name like "Sm%"

If your SAP ASE server is also accent-insensitive, it treats all accented characters as equal to each other and to
their unaccented counterparts, both uppercase and lowercase. The sp_helpsort system procedure displays
the characters that are treated as equivalent, displaying an “=" between them.

6.4.2 Using Wildcard Characters

You can use the match string with a number of wildcard characters.

The summary of wildcard characters is:

Symbol Meaning

% Any string of O or more characters.

- Any single character.

(] Any single character within the specified range ([a-f]) or set ([abcdef]).

("] Any single character not within the specified range (["a-f]) or set ([“abcdef]).

Enclose the wildcard character and the match string in single or double quotes (1ike “[dD]eFr_nce").

6.4.2.1 The Percent Sign (%) Wildcard Character

Use the % wildcard character to represent any string of zero or more characters.

For example, to find all the phone numbers in the authors table that begin with the 415 area code:

select phone
from authors
where phone like "415%"

To find names that have the characters “en” in them (Bennet, Green, McBadden):

select au lname
from authors
where au lname like

"Sens"

Trailing blanks following “%" in a 1ike clause are truncated to a single trailing blank. For example, “%" followed
by two spaces matches “X "(one space); “X " (two spaces); “X " (three spaces), or any number of trailing
spaces.

Reference Manual: Building Blocks
490 PUBLIC Expressions, Identifiers, and Wildcard Characters

6.4.2.2 The Underscore (_) Wildcard Character

Use the underscore (_) wildcard character to represent any single character.

For example, to find all six-letter names that end with “heryl” (for example, Cheryl):

select au fname
from authors
where au fname like " heryl"

6.4.2.3 Bracketed ([]) Characters

Use brackets to enclose a range of characters, such as [a-f], or a set of characters such as [a2Br]. When ranges
are used, all values in the sort order between (and including) <rangespec1>and <rangespec2> are returned.

For example, “[0-z]" matches 0-9, A-Z and a-z (and several punctuation characters) in 7-bit ASCII.

To find names ending with “inger” and beginning with any single character between M and Z:

select au lname
from authors
where au lname like " [M-Z]inger"

To find both “DeFrance” and “deFrance”:

select au lname
from authors
where au lname like "[dD]eFrance"

When using bracketed identifiers to create objects, such as with create table [<table name>] Of create
database [<dbname>],you mustinclude atleast one valid character.

All trailing spaces within bracketed identifiers are removed from the object name. For example, you achieve the
same results executing the following create table commands:

® create table [tabl<space><space>]
® create table [tabl]
® create table [tabl<space><space><space>]

® create table tabl

This rule applies to all objects you can create using bracketed identifiers.

6.4.2.4 The Caret (*) Wildcard Character

The caret is the negative wildcard character. Use it to find strings that do not match a particular pattern.

For example, “[*a-f]" finds strings that are not in the range a-f and “[*a2bR]" finds strings that are not “a,” “2,"
“b"or “R”

Reference Manual: Building Blocks
Expressions, Identifiers, and Wildcard Characters PUBLIC 491

To find names beginning with “M" where the second letter is not “c":

select au lname
from authors
where au lname like "M["c]%"

When ranges are used, all values in the sort order between (and including) <rangespec1>and <rangespec2>
are returned. For example, “[0-z]" matches 0-9, A-Z, a-z, and several punctuation characters in 7-bit ASCII.

6.4.3 Using Multibyte Wildcard Characters

If the multibyte character set configured on your SAP ASE server defines equivalent double-byte characters for
the wildcard characters _, %, - [,], and /A, you can substitute the equivalent character in the match string. The
underscore equivalent represents either a single- or double-byte character in the match string.

6.4.4 Using Wildcard Characters as Literal Characters

To search for the occurrence of %, _, [,], or » within a string, you must use an escape character. When a
wildcard character is used in conjunction with an escape character, the SAP ASE server interprets the wildcard
character literally, rather than using it to represent other characters.

The SAP ASE server provides two types of escape characters:

e Square brackets, a Transact-SQL extension
e Any single character that immediately follows an escape clause, compliant with the SQL standards

6.4.4.1 Using Square Brackets ([]) as Escape Characters

Use square brackets as escape characters for the percent sign, the underscore, and the left bracket. The right
bracket does not need an escape character; use it by itself. If you use the hyphen as a literal character, it must
be the first character inside a set of square brackets.

Examples of square brackets used as escape characters with 1ike are:

Table 20: Using Square Brackets to Search for Wildcard Characters

like predicate Meaning

like "5%" 5 followed by any string of O or more characters
like "5[%]" 5%

like " n" an, in, on (and so on)

like "[]In" _n

Reference Manual: Building Blocks
492 PUBLIC Expressions, Identifiers, and Wildcard Characters

1like predicate Meaning
like "[a-cdf]" a,b,c dorf
like "[-acdf]" -,a,¢c.d,orf
like "[[1" [

like "1™]

like “[[lab]” [lab

6.4.4.2 Using the escape Clause

Use the escape clause to specify an escape character. Any single character in the server’s default character

set can be used as an escape character. If you try to use more than one character as an escape character, the
SAP ASE server generates an exception.

Do not use existing wildcard characters as escape characters because:

e |f you specify the underscore (_) or percent sign (%) as an escape character, it loses its special meaning
within that 1ike predicate and acts only as an escape character.

e |f you specify the left or right bracket ([or]) as an escape character, the Transact-SQL meaning of the
bracket is disabled within that 11 ke predicate.

e |f you specify the hyphen (-) or caret () as an escape character, it loses its special meaning and acts only

as an escape character.

An escape character retains its special meaning within square brackets, unlike wildcard characters such as the

underscore, the percent sign, and the open bracket.

The escape character is valid only within its 1i ke predicate and has no effect on other 1ike predicates

contained in the same statement. The only characters that are valid following an escape character are the

wildcard characters (_, %, [,], or []), and the escape character itself. The escape character affects only the
character following it, and subsequent characters are not affected by it.

If the pattern contains two literal occurrences of the character that happens to be the escape character, the
string must contain four consecutive escape characters. If the escape character does not divide the pattern

into pieces of one or two characters, the SAP ASE server returns an error message. Examples of escape

clauses used with 1ike are:

Table 21: Using the Escape Clause

1like predicate Meaning
like "5@%" escape "@" 5%

like "* n" escape "*"

like "%80Q@%%" escape "@"

String containing 80%

Reference Manual: Building Blocks
Expressions, Identifiers, and Wildcard Characters

PUBLIC

493

1like predicate Meaning

like "* sqgl**%" escape "*" String containing _sqgl*

like "S##### #%%5" escape "#" String containing ##_%

6.4.5 Using Wildcard Characters With datetime Data

When you use 1ike with datetime values, the SAP ASE server converts the dates to the standard datetime
format, then to varchar. Since the standard storage format does not include seconds or milliseconds, you
cannot search for seconds or milliseconds with 11ike and a pattern.

Itis agood ideato use 1ike when you search for datetime values, since datetime entries may contain a
variety of date parts. For example, if you insert the value “9:20" and the current date into a column named
arrival time, the clause:

where arrival time = '9:20'

would not find the value, because the SAP ASE server converts the entry into “Jan 11900 9:20AM.” However,
the following clause would find this value:

where arrival time like '%9:20%'

Reference Manual: Building Blocks
494 PUBLIC Expressions, Identifiers, and Wildcard Characters

7 Reserved Words

Keywords, also known as reserved words, are words that have special meanings.

71 Transact-SQL Reserved Words

These words are reserved by the SAP ASE server as keywords (part of SQL command syntax).

You cannot use these words as names of database objects such as databases, tables, rules, or defaults. They
can be used as names of local variables and as stored procedure parameter names.

To find the names of existing objects that are reserved words, use sp_checkreswords in Reference Manual:
Procedures.

Words
add, all, allow, alter, and, any, arith_overflow, as, asc, at, authorization, avg
begin, between, break, browse, bulk, by

cascade, case, char_convert, check, checkpoint, close, clustered, coalesce, commit, compressed,
compute, confirm, connect, constraint, continue, controlrow, convert, count, count_big, create, current,
cursor

database, dbcc, deallocate, declare, decrypt, decrypt_default, default, delete, deny, desc, deterministic,
disk, distinct, drop, dual_control, dummy, dump

else, encrypt, end, endtran, errlvl, errordata, errorexit, escape, except, exclusive, exec, execute, exists, exit,
exp_row_size, external

fetch, fillfactor, for, foreign, from
goto, grant, group
having, holdlock

identity, identity_gap, identity_start, if, in, index, inout, insensitive, insert, install, intersect, into, is,

isolation
J jar, join
K key, kil
L level, like, lineno, load, lob_compression, lock
M

manage, materialized, max, max_rows_per_page, min, mirror, mirrorexit, modify

Reference Manual: Building Blocks
Reserved Words PUBLIC 495

Words

N national, new, noholdlock, nonclustered, not, null, nullif, numeric_truncation

i Note

Although “new” is not a Transact-SQL reserved word, since it may become a reserved word in the
future, you should avoid using it (for example, to name a database object). “New" is a special case
because it appears in the spt _values table, and because sp _checkreswords displays “New" as a
reserved word.

of, off, offsets, on, once, online, only, open, option, or, order, out, output, over

partition, perm, permanent, plan, prepare, primary, print, privileges, proc, procedure, processexit,
proxy_table, public

Q quiesce

raiserror, read, readpast, readtext, reconfigure, references, release_locks_on_close, remove, reorg,
replace, replication, reservepagegap, return, returns, revoke, role, rollback, rowcount, rows, rule

save, schema, scroll, select, semi_sensitive, set, setuser, shared, shutdown, some, statistics, stringsize,
stripe, sum, syb_identity, syb_restree, syb_terminate

table, temp, temporary, textsize, to, tracefile, tran, transaction, trigger, truncate, tsequal
union, unique, unpartition, update, use, user, user_option, using

values, varying, view

waitfor, when, where, while, with, work, writetext

X xmlextract, xmlparse, xmltable, xmltest

Related Information

Potential ANSI SQL Reserved Words [page 498]

7.2 ANSI SQL Reserved Words

The SAP ASE server includes entry-level ANSI SQL features. Full ANSI SQL implementation includes the words
listed in the following tables as command syntax.

Upgrading identifiers can be a complex process; therefore, we are providing this list for your convenience. The
publication of this information does not commit SAP to providing all of these ANSI SQL features in subsequent
releases. In addition, subsequent releases may include keywords not included in this list.

Reference Manual: Building Blocks
496 PUBLIC Reserved Words

ANSI SQL keywords that are not reserved words in Transact-SQL are:

Words
absolute, action, allocate, are, assertion

B bit, bit_length, both

c cascaded, case, cast, catalog, char, char_length, character, character_length, coalesce, collate, collation,
column, connection, constraints, corresponding, cross, current_date, current_time, current_timestamp,
current_user

D date, day, dec, decimal, deferrable, deferred, describe, descriptor, diagnostics, disconnect, domain

E end-exec, exception, extract

F' false, first, float, found, full

G get, global, go

H hour

I immediate, indicator, initially, inner, input, insensitive, int, integer, interval

J join

L language, last, leading, left, local, lower

M match, minute, module, month

N names, natural, nchar, next, no, nullif, numeric

0 octet_length, outer, output, overlaps

P pad, partial, position, preserve, prior

R real, relative, restrict, right

S scroll, second, section, semi_sensitive, session_user , size , smallint, space, sqgl, sglcode, sglerror, sqlstate,
substring, system_user

T then, time, timestamp, timezone_hour, timezone_minute, trailing, translate, translation, trim, true

U unknown, upper, usage

v value, varchar

w when, whenever, write, year

Z

zone

Reference Manual: Building Blocks
Reserved Words PUBLIC 497

7.3 Potential ANSI SQL Reserved Words

If you are using the ISO/IEC 9075:1989 standard, avoid using these words because they may become ANSI
SQL reserved words in the future.

Words
A after, alias, async
B before, boolean, breadth
c call, completion, cycle
D data, depth, dictionary
E each, elseif, equals
G general
I ignore
L leave, less, limit, loop
M modify
N new, none
0 object, oid, old, operation, operators, others
P parameters, pendant, preorder, private, protected
R recursive, ref, referencing, resignal, return, returns, routine, row
S savepoint, search, sensitive, sequence, signal, similar, sglexception, structure
T test, there, type
U Under
v variable, virtual, visible
W

wait, without

Reference Manual: Building Blocks
498 PUBLIC Reserved Words

8 SQLSTATE Codes and Messages

SQLSTATE codes are required for entry level ANSI SQL compliance, and provide diagnostic information about
warnings and exceptions.

Warnings Conditions that require user notification but are not serious enough to prevent a SQL statement
from executing successfully.

Exceptions Conditions that prevent a SQL statement from having any effect on the database.

Each SQLSTATE code consists of a 2-character class followed by a 3-character subclass. The class specifies
general information about error type. The subclass specifies more specific information.

SQLSTATE codes are stored in the sysmessages system table, along with the messages that display when
these conditions are detected. Not all SAP ASE error conditions are associated with a SQLSTATE code — only
those mandated by ANSI SQL. In some cases, multiple SAP ASE error conditions are associated with a single
SQLSTATE value.

8.1 SQLSTATE Warnings

The SAP ASE server detects SQLSTATE warning conditions

The warnings are:

Message Value Description

Warning - null value 01003 Occurs when you use an aggregate function (avg, max, min, sum, count) on
eliminated in set an expression with a null value.

function.

Warning - string 01004 Occurs when character, unichar, or binary data is truncated to 255 bytes. The
data, right data may be:

truncation e Theresult of a select statement in which the client does not support the

WIDE TABLES property.
e Parameters to an RPC on remote SAP ASE servers or Open Servers that do
not support the WIDE TABLES property.

Related Information

avg [page 70]
max [page 256]
min [page 259]

Reference Manual: Building Blocks
SQLSTATE Codes and Messages PUBLIC 499

sum [page 404]

count [page 119]

8.2 Exceptions

The SAP ASE server detects various types of exceptions.

Cardinality violations

Data exceptions

Integrity constraint violations

Invalid cursor states

Syntax errors and access rule violations
Transaction rollbacks

with check option violations

8.2.1 Cardinality Violations

Cardinality violations occur when a query that should return only a single row returns more than one row to an
Embedded SQL™ application.

Message Value Description

Subquery returned more than 1 21000 Occurs when:

value. This is illegal when the e Ascalar subquery or a row subquery returns more than
subquery follows =, !=, <, <=, one row.

>, >=. or when the subquery is °

used as an expression.

Aselect into parameter list queryinEmbed-

ded SQL returns more than one row.

500

PUBLIC

Reference Manual: Building Blocks
SQLSTATE Codes and Messages

8.2.2 Data Exceptions

Data exceptions occur when an entry is too long for its datatype, or contains an illegal escape sequence or

other format errors.

Message Value Description
Arithmetic overflow 22003 Occurs when:
occurred. e Anexact numeric type would lose precision or scale as a result of
an arithmetic operation or a sum function.
® Anapproximate numeric type would lose precision or scale as a
result of truncation, rounding, or a sum function.
Data exception - string 22001 Occurswhenachar,unichar,univarchar, orvarchar col-
data right truncated. umn is too short for the data being inserted or updated and non-blank
characters must be truncated.
Divide by zero occurred. 22012 Occurs when a numeric expression is being evaluated and the value of
the divisor is zero.
Illegal escape character 22019 Occurs when you are searching for strings that match a given pattern if
found. There are fewer the escape sequence does not consist of a single character.
bytes than necessary to
form a valid character.
Invalid pattern string. 22025 Occurs when you are searching for strings that match a particular pat-

The character following
the escape character must
be percent sign,
underscore, left square
bracket, right square
bracket, or the escape

character.

tern when:

® The escape character is not immediately followed by a percent
sign, an underscore, or the escape character itself, or

® The escape character partitions the pattern into substrings whose
lengths are other than 1 or 2 characters.

Related Information

sum [page 404]

Reference Manual: Building Blocks
SQLSTATE Codes and Messages

PUBLIC 501

8.2.3 Integrity Constraint Violations

Integrity constraint violations occur when an insert, update, or delete statement violates aprimary key,

foreign key, check, or unique constraint or a unique index.

Message Value

Description

Attempt to insert duplicate key row in object 23000

<object name> with unique index <index name>.

Occurs when a duplicate row is inserted
into a table that has a unique constraint or
index.

Check constraint violation occurred, dbname = 23000
<database name>, table name = <table name>,

constraint name = <constraint_name>.

Occurs whenan update ordelete

would violate a check constraint on a col-
umn.

Dependent foreign key constraint violation in 23000
a referential integrity constraint. dbname =
<database name>, table name = <table name>,

constraint name = <constraint name>.

Occurs whenanupdate ordeleteona
primary key table would violate a foreign
key constraint.

Foreign key constraint violation occurred, 23000

dbname = <database name>, table name =
<table name>, constraint name =

<constraint_name>.

Occurs whenan insert or update ona
foreign key table is performed without a
matching value in the primary key table.

8.2.4 Invalid Cursor States

Invalid cursor states occur when a fetch uses a cursor that is not currently open, or an update where

current of ordelete where current of affects acursor row that has been either modified or deleted, or

not been fetched.

Message Value

Description

Attempt to use cursor <cursor name> which 24000
is not open. Use the system stored
procedure sp cursorinfo for more

information.

Occurs when an attempt is made to fetch from a
cursor that has never been opened or that was
closed by a commi t statement or an implicit or

explicit rol1back. Reopen the cursor and re-

peat the fetch.

502 PUBLIC

Reference Manual: Building Blocks
SQLSTATE Codes and Messages

Message

Value Description

Cursor <cursor name> was closed
implicitly because the current cursor
position was deleted due to an update or
a delete. The cursor scan position could
not be recovered. This happens for
cursors which reference more than one

table.

24000 Occurs when the join column of a multitable
cursor has been deleted or changed. Issue an-
other fetch to reposition the cursor.

The cursor <cursor_name> had its current
scan position deleted because of a
DELETE/UPDATE WHERE CURRENT OF or a
regular searched DELETE/UPDATE. You must
do a new FETCH before doing an UPDATE or
DELETE WHERE CURRENT OF.

24000 Occurs when a user issues an update/
delete where current of whose cur-
rent cursor position has been deleted or
changed. Issue another fetch before retrying
the update/delete where current

of.

The UPDATE/DELETE WHERE CURRENT OF failed 24000 Occurs when a user issues an update/

for the cursor <cursor name> because it

is not positioned on a row.

delete where current of onacursor
that:

® Has not yet fetched a row

e Has fetched one or more rows after reach-
ing the end of the result set

8.2.5 Syntax Errors and Access Rule Violations

Syntax errors are generated by SQL statements that contain unterminated comments, implicit datatype
conversions not supported by the SAP ASE server or other incorrect syntax.

Access rule violations are generated when users try to access an object that does not exist or one for which

they do not have the correct permissions.

Message Value

Description

<command> permission denied on 42000
object <object name>, database
<database name>, owner

<owner_name> .

Occurs when a user tries to access an object for which he or
she does not have the proper permissions.

Implicit conversion from 42000
datatype ‘<datatype>’ to

‘<datatype>’ 1is not allowed.

Use the CONVERT function to run

this query.

Occurs when the user attempts to convert one datatype to an-
other but the SAP ASE server cannot do the conversion implic-

itly.

Reference Manual: Building Blocks
SQLSTATE Codes and Messages

PUBLIC 503

Message Value Description

Incorrect syntax near 42000 Occurs when incorrect SQL syntax is found near the object
<object name>. specified.

Insert error: column name or 42000 Occurs during inserts when an invalid column name is used or
number of supplied values does when an incorrect number of values is inserted.

not match table definition.

Missing end comment mark ‘*/’. 42000 Occurs when a comment that begins with the /* opening de-
limiter does not also have the */ closing delimiter.

<object name> not found. 42000 Occurs when a user tries to reference an object that he or she
Specify owner.objectname or use does not own. When referencing an object owned by another
sp help to check whether the user, be sure to qualify the object name with the name of its

object exists (sp_help may owner.

produce lots of output).

The size (<size>) given to the 42000 Occurs when:

<object_name> exceeds the e The total size of all the columns in a table definition ex-
maximum. The largest size ceeds the maximum allowed row size.
allowed is <size>. e The size of a single column or parameter exceeds the

maximum allowed for its datatype.

8.2.6 Transaction Rollbacks

Transaction rollbacks occur when the transaction isolation level issetto 3, butthe SAP ASE server
cannot guarantee that concurrent transactions can be serialized. This type of exception generally results from
system problems such as disk crashes and offline disks.

Message Value Description

Your server command (process id 40001 Occurs when the SAP ASE server detects that it
#<process id>) was deadlocked with cannot guarantee that two or more concurrent
another process and has been chosen as transactions can be serialized.

deadlock victim. Re-run your command.

Reference Manual: Building Blocks
504 PUBLIC SQLSTATE Codes and Messages

8.2.7 with check option Violation

This class of exception occurs when data being inserted or updated through a view would not be visible through

the view.
Message Value Description
The attempted insert or update failed because the 44000 Occurs when a view, or any view on

target view was either created WITH CHECK OPTION
or spans another view created WITH CHECK OPTION.
At least one resultant row from the command would

not qualify under the CHECK OPTION constraint.

which it depends, was created with
awith check option clause.

Reference Manual: Building Blocks
SQLSTATE Codes and Messages

PUBLIC 505

Important Disclaimers and Legal Information

Hyperlinks

Some links are classified by an icon and/or a mouseover text. These links provide additional information.
About the icons:

o Links with the icon o : You are entering a Web site that is not hosted by SAP. By using such links, you agree (unless expressly stated otherwise in your
agreements with SAP) to this:
e The content of the linked-to site is not SAP documentation. You may not infer any product claims against SAP based on this information.
e SAP does not agree or disagree with the content on the linked-to site, nor does SAP warrant the availability and correctness. SAP shall not be liable for any
damages caused by the use of such content unless damages have been caused by SAP's gross negligence or willful misconduct.

e Links with the icon &: You are leaving the documentation for that particular SAP product or service and are entering a SAP-hosted Web site. By using such
links, you agree that (unless expressly stated otherwise in your agreements with SAP) you may not infer any product claims against SAP based on this
information.

Beta and Other Experimental Features

Experimental features are not part of the officially delivered scope that SAP guarantees for future releases. This means that experimental features may be changed by
SAP at any time for any reason without notice. Experimental features are not for productive use. You may not demonstrate, test, examine, evaluate or otherwise use
the experimental features in a live operating environment or with data that has not been sufficiently backed up.

The purpose of experimental features is to get feedback early on, allowing customers and partners to influence the future product accordingly. By providing your
feedback (e.g. in the SAP Community), you accept that intellectual property rights of the contributions or derivative works shall remain the exclusive property of SAP.

Example Code

Any software coding and/or code snippets are examples. They are not for productive use. The example code is only intended to better explain and visualize the syntax
and phrasing rules. SAP does not warrant the correctness and completeness of the example code. SAP shall not be liable for errors or damages caused by the use of
example code unless damages have been caused by SAP's gross negligence or willful misconduct.

Gender-Related Language

We try not to use gender-specific word forms and formulations. As appropriate for context and readability, SAP may use masculine word forms to refer to all genders.

Videos Hosted on External Platforms

Some videos may point to third-party video hosting platforms. SAP cannot guarantee the future availability of videos stored on these platforms. Furthermore, any
advertisements or other content hosted on these platforms (for example, suggested videos or by navigating to other videos hosted on the same site), are not within
the control or responsibility of SAP.

Reference Manual: Building Blocks
506 PUBLIC Important Disclaimers and Legal Information

Reference Manual: Building Blocks
Important Disclaimers and Legal Information PUBLIC 507

/contactsap

© 2020 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form
or for any purpose without the express permission of SAP SE or an SAP
affiliate company. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software vendors.
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for
informational purposes only, without representation or warranty of any
kind, and SAP or its affiliated companies shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP or
SAP affiliate company products and services are those that are set forth
in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an
additional warranty.

SAP and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP
SE (or an SAP affiliate company) in Germany and other countries. All
other product and service names mentioned are the trademarks of their
respective companies.

Please see https://www.sap.com/about/legal/trademark.html for
additional trademark information and notices.

THE BEST RUN

https://www.sap.com/about/legal/trademark.html

	Reference Manual: Building Blocks
	Content
	1 Reference Manual Series
	2 System and User-Defined Datatypes
	2.1 Datatype Categories
	2.1.1 Exact Numeric Datatypes
	2.1.1.1 Integer Types
	2.1.1.2 Decimal Datatypes

	2.1.2 Approximate Numeric Datatypes
	2.1.2.1 Understanding Approximate Numeric Datatypes
	2.1.2.2 Range, Precision, and Storage Size
	2.1.2.3 Entering Approximate Numeric Data
	2.1.2.4 NaN and Inf Values

	2.1.3 Money Datatypes
	2.1.3.1 Accuracy
	2.1.3.2 Range and Storage Size
	2.1.3.3 Entering Monetary Values

	2.1.4 timestamp Datatype
	2.1.4.1 Creating a timestamp Column

	2.1.5 Date and Time Datatypes
	2.1.5.1 Range and Storage Requirements
	2.1.5.2 Entering Date and Time Data
	2.1.5.2.1 Entering the Date
	2.1.5.2.2 Entering the Time
	2.1.5.2.3 Displaying Formats for datetime, smalldatetime, and date Values
	2.1.5.2.4 Display Formats for bigdatetime and bigtime
	2.1.5.2.5 Displaying Formats for time Value
	2.1.5.2.6 Finding Values That Match a Pattern
	2.1.5.2.7 Manipulating Dates

	2.1.5.3 Standards and Compliance

	2.1.6 Character Datatypes
	2.1.6.1 unichar and univarchar
	2.1.6.2 Length and Storage Size
	2.1.6.2.1 Determining Column Length with System Functions

	2.1.6.3 Entering Character Data
	2.1.6.3.1 Entering Unicode Characters

	2.1.6.4 Example of Treatment of Blanks
	2.1.6.5 Manipulating Character Data
	2.1.6.6 Standards and Compliance for Character Datatypes

	2.1.7 Binary Datatypes
	2.1.7.1 Valid binary and varbinary Entries
	2.1.7.2 Entries of More than the Maximum Column Size
	2.1.7.3 Treatment of Trailing Zeros
	2.1.7.4 Platform Dependence

	2.1.8 bit Datatype
	2.1.9 sysname and longsysname Datatypes
	2.1.10 text, image, and unitext Datatypes
	2.1.10.1 Data Structures Used for Storing text, unitext, and image Data
	2.1.10.2 Initialize text, unitext, and image Columns
	2.1.10.2.1 Define unitext Columns

	2.1.10.3 Save Space by Allowing NULL
	2.1.10.4 Obtain Information from sysindexes
	2.1.10.5 Using readtext and writetext
	2.1.10.6 Determine How Much Space a Column Uses
	2.1.10.7 Restrictions on text, image, and unitext Columns
	2.1.10.8 Selecting text, unitext, and image Data
	2.1.10.9 Converting text and image Datatypes
	2.1.10.10 Converting to or from Unitext
	2.1.10.11 Pattern Matching in text Data
	2.1.10.12 Duplicate Rows
	2.1.10.13 Using Large Object text, unitext, and image Datatypes in Stored Procedures
	2.1.10.13.1 Declaring a LOB Datatype
	2.1.10.13.2 Creating a LOB Parameter
	2.1.10.13.3 Examples for Using LOB Datatypes

	2.1.10.14 Standards and Compliance

	2.2 Range and Storage Size
	2.3 Datatypes of Columns, Variables, or Parameters
	2.3.1 Declaring Datatypes for a Column in a Table
	2.3.2 Declaring Datatypes for Local Variable in a Batch or Procedure
	2.3.3 Declaring Datatypes for a Parameter in a Stored Procedure
	2.3.4 Determine the Datatype of Numeric Literals
	2.3.5 Determine the Datatype of Character Literals

	2.4 Datatypes of Mixed-Mode Expressions
	2.4.1 Determine the Datatype Hierarchy
	2.4.2 Determine Precision and Scale

	2.5 Datatype Conversions
	2.5.1 Automatic Conversion of Fixed-Length NULL Columns
	2.5.2 Handling Overflow and Truncation Errors
	2.5.2.1 Determining Server Behavior During an Arithmetic Error
	2.5.2.2 Resolving Arithmetic Overflow Errors from the round Function
	2.5.2.3 Resolving Arithmetic Overflow Errors from Character Conversions
	2.5.2.4 Resolving Arithmetic Overflow Errors Cause by a '?' Parameter Marker
	2.5.2.5 Resolving Scale Truncation Error Issues

	2.6 Datatypes and Encrypted Columns
	2.7 User-Defined Datatypes
	2.8 Standards and Compliance

	3 Transact-SQL Functions
	3.1 abs
	3.2 acos
	3.3 allocinfo
	3.4 ascii
	3.5 asehostname
	3.6 asin
	3.7 atan
	3.8 atn2
	3.9 avg
	3.10 audit_event_name
	3.11 authmech
	3.12 biginttohex
	3.13 bintostr
	3.14 cache_usage
	3.15 case
	3.16 cast
	3.16.1 Usage for cast
	3.16.1.1 Conversions Involving Java Classes
	3.16.1.2 Implicit Conversion
	3.16.1.3 Explicit Conversion

	3.17 ceiling
	3.18 char
	3.18.1 Usage for char
	3.18.1.1 Reformatting Output With char

	3.19 char_length
	3.20 charindex
	3.21 coalesce
	3.22 col_length
	3.23 col_name
	3.24 compare
	3.24.1 Usage for compare
	3.24.1.1 Maximum Row and Column Length for APL and DOL

	3.25 convert
	3.25.1 Usage for convert
	3.25.1.1 Conversions Involving Java classes
	3.25.1.2 Implicit Conversion
	3.25.1.3 Explicit Conversion

	3.26 cos
	3.27 cot
	3.28 count
	3.29 count_big
	3.30 create_locator
	3.31 current_bigdatetime
	3.32 current_bigtime
	3.33 current_date
	3.34 current_time
	3.35 curunreservedpgs
	3.36 data_pages
	3.37 datachange
	3.37.1 Usage for datachange
	3.37.1.1 Restrictions for datachange

	3.38 datalength
	3.39 dateadd
	3.40 datediff
	3.41 datename
	3.42 datepart
	3.43 day
	3.44 db_attr
	3.45 db_id
	3.46 db_instanceid
	3.47 db_name
	3.48 db_recovery_status
	3.49 dbencryption_status
	3.50 defrag_status
	3.51 degrees
	3.52 derived_stat
	3.53 difference
	3.54 dol_downgrade_check
	3.55 exp
	3.56 floor
	3.57 generate_sqlscript
	3.58 get_appcontext
	3.59 get_internal_date
	3.60 getdate
	3.61 getutcdate
	3.62 hadr_mode
	3.63 hadr_state
	3.64 has_role
	3.65 hash
	3.66 hashbytes
	3.67 hextobigint
	3.68 hextoint
	3.69 host_id
	3.70 host_name
	3.71 identity_burn_max
	3.72 imrs_rowinfo
	3.73 index_col
	3.74 index_colorder
	3.75 index_name
	3.76 instance_id
	3.77 instance_name
	3.78 inttohex
	3.79 isdate
	3.80 is_quiesced
	3.81 is_sec_service_on
	3.82 is_singleusermode
	3.83 isnull
	3.84 isnumeric
	3.85 lc_id
	3.86 lc_name
	3.87 lct_admin
	3.88 left
	3.89 len
	3.90 license_enabled
	3.91 list_appcontext
	3.92 locator_literal
	3.93 locator_valid
	3.94 lockscheme
	3.95 log
	3.96 log10
	3.97 loginfo
	3.98 lower
	3.99 lpad
	3.100 lprofile_id
	3.101 lprofile_name
	3.102 ltrim
	3.103 max
	3.104 migrate_instance_id
	3.105 min
	3.106 month
	3.107 mut_excl_roles
	3.108 newid
	3.109 next_identity
	3.110 nullif
	3.111 object_attr
	3.112 object_id
	3.113 object_name
	3.114 object_owner_id
	3.115 pageinfo
	3.116 pagesize
	3.117 partition_id
	3.118 partition_name
	3.119 partition_object_id
	3.120 password_random
	3.121 patindex
	3.122 pi
	3.123 power
	3.124 proc_role
	3.125 pssinfo
	3.126 radians
	3.127 rand
	3.128 rand2
	3.129 replicate
	3.130 reserve_identity
	3.131 reserved_pages
	3.132 return_lob
	3.133 reverse
	3.134 right
	3.135 rm_appcontext
	3.136 role_contain
	3.137 role_id
	3.138 role_name
	3.139 round
	3.140 row_count
	3.141 rtrim
	3.142 sdc_intempdbconfig
	3.143 session_context
	3.144 set_appcontext
	3.145 setdata
	3.146 show_cached_plan_in_xml
	3.147 show_cached_text
	3.148 show_cached_text_long
	3.149 show_condensed_text
	3.150 show_dynamic_params_in_xml
	3.151 show_plan
	3.152 show_prepared_statements
	3.153 show_role
	3.154 show_sec_services
	3.155 shrinkdb_status
	3.156 sign
	3.157 sign_pages
	3.158 sin
	3.159 sortkey
	3.159.1 Usage for sortkey
	3.159.1.1 Collation Tables
	3.159.1.2 Collation Names and IDs

	3.160 soundex
	3.161 space
	3.162 spaceusage
	3.163 spid_instance_id
	3.164 square
	3.165 sqrt
	3.166 stddev
	3.167 used_pages
	3.168 stdev
	3.169 stdevp
	3.170 stddev_pop
	3.171 stddev_samp
	3.172 str
	3.173 str_replace
	3.174 strtobin
	3.175 stuff
	3.176 substring
	3.177 sum
	3.178 suser_id
	3.179 suser_name
	3.180 syb_quit
	3.181 syb_sendmsg
	3.182 sys_tempdbid
	3.183 tan
	3.184 tempdb_id
	3.185 textptr
	3.186 textvalid
	3.187 to_unichar
	3.188 tran_dumpable_status
	3.189 tsequal
	3.189.1 Usage for tsequal
	3.189.1.1 Adding a Timestamp to a New Table for Browsing

	3.190 uhighsurr
	3.191 ulowsurr
	3.192 upper
	3.193 uscalar
	3.194 user
	3.195 user_id
	3.196 user_name
	3.197 valid_name
	3.198 valid_user
	3.199 var
	3.200 var_pop
	3.201 var_samp
	3.202 variance
	3.203 varp
	3.204 workload_metric
	3.205 xa_bqual
	3.206 xa_gtrid
	3.207 xact_connmigrate_check
	3.208 xact_owner_instance
	3.209 xmlextract
	3.210 xmlparse
	3.211 xmlrepresentation
	3.212 xmltable
	3.213 xmltest
	3.214 xmlvalidate
	3.215 year

	4 User-Defined Functions (UDFs)
	5 Global Variables
	5.1 Using Global Variables in a Clustered Environment

	6 Expressions, Identifiers, and Wildcard Characters
	6.1 Expressions
	6.1.1 Size of Expressions
	6.1.2 Arithmetic and Character Expressions
	6.1.3 Relational and Logical Expressions
	6.1.4 Operator Precedence
	6.1.5 Arithmetic Operators
	6.1.6 Bitwise Operators
	6.1.7 String Concatenation Operator
	6.1.8 Comparison Operators
	6.1.9 Nonstandard Operators
	6.1.10 Using any, all, and in
	6.1.11 Negating and Testing
	6.1.12 Ranges
	6.1.13 Using Nulls in Expressions
	6.1.13.1 Comparisons That Return TRUE
	6.1.13.2 Difference Between FALSE and UNKNOWN
	6.1.13.3 Using “NULL” as a Character String
	6.1.13.4 NULL Compared to the Empty String

	6.1.14 Connecting Expressions
	6.1.15 Using Parentheses in Expressions
	6.1.16 Comparing Character Expressions
	6.1.17 Using the Empty String
	6.1.18 Including Quotation Marks in Character Expressions
	6.1.19 Using the Continuation Character

	6.2 Identifiers
	6.2.1 Short Identifiers
	6.2.2 Tables Beginning With # (Temporary Tables)
	6.2.3 Case Sensitivity and Identifiers
	6.2.4 Uniqueness of Object Names
	6.2.5 Using Delimited Identifiers
	6.2.5.1 Enabling Quoted Identifiers
	6.2.5.2 Using Quoted Identifiers on Temporary Tables

	6.2.6 Identifying Tables or Columns by Their Qualified Object Name
	6.2.6.1 Using Delimited Identifiers Within an Object Name
	6.2.6.2 Omitting the Owner Name
	6.2.6.3 Referencing Your Own Objects in the Current Database
	6.2.6.4 Referencing Objects Owned by the Database Owner
	6.2.6.5 Using Qualified Identifiers Consistently

	6.2.7 Determining Whether an Identifier is Valid
	6.2.8 Renaming Database Objects
	6.2.9 Using Multibyte Character Sets

	6.3 like Pattern Matching
	6.4 Pattern Matching with Wildcard Characters
	6.4.1 Case and Accent Insensitivity
	6.4.2 Using Wildcard Characters
	6.4.2.1 The Percent Sign (%) Wildcard Character
	6.4.2.2 The Underscore (_) Wildcard Character
	6.4.2.3 Bracketed ([]) Characters
	6.4.2.4 The Caret (^) Wildcard Character

	6.4.3 Using Multibyte Wildcard Characters
	6.4.4 Using Wildcard Characters as Literal Characters
	6.4.4.1 Using Square Brackets ([]) as Escape Characters
	6.4.4.2 Using the escape Clause

	6.4.5 Using Wildcard Characters With datetime Data

	7 Reserved Words
	7.1 Transact-SQL Reserved Words
	7.2 ANSI SQL Reserved Words
	7.3 Potential ANSI SQL Reserved Words

	8 SQLSTATE Codes and Messages
	8.1 SQLSTATE Warnings
	8.2 Exceptions
	8.2.1 Cardinality Violations
	8.2.2 Data Exceptions
	8.2.3 Integrity Constraint Violations
	8.2.4 Invalid Cursor States
	8.2.5 Syntax Errors and Access Rule Violations
	8.2.6 Transaction Rollbacks
	8.2.7 with check option Violation

	Important Disclaimers and Legal Information
	Copyright / Legal Notice

